Physical Sciences

Phase Sensor for Aligning a Segmented Telescope Mirror

Alignment can be maintained even in the presence of atmospheric turbulence. A phase sensor has been developed for use in aligning a segmented telescope mirror to within a fraction of a wavelength in piston. (As used here, “piston” signifies displacement of a mirror segment along the optical axis of the telescope.) Such precise alignment is necessary in order to realize the full benefit of the large aperture achievable through segmentation.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Lightweight Mirrors for Orbiting Earth-Observing Instruments

A report discusses selected aspects of a continuing program to develop thermally stable, lightweight mirrors for planned Earth-observing spaceborne instruments. These mirrors are required to retain precise concave or convex surface figures required for diffraction-limited optical performance, even in the presence of transient, asymmetric thermal loads, which include solar heating and radiational cooling. In the first phase of the program, preliminary analyses were performed to select one of three types of mirror structures: one made of SiC, one made of Be, and a hybrid comprising a lightweight composite-material substructure supporting a glass face sheet that would be a substrate for the required precise optical surface. The hybrid structure was selected for further development because it would offer a combination of high stiffness and low mass and because, relative to the Be and SiC structures, (1) the coefficients of thermal expansion of its constituent materials and the resulting wavefront error would be smaller, and (2) it could be fabricated at lower cost. A prototype hybrid structure with an aperture diameter of 0.3 m was fabricated. Planned efforts in the next phase of the program include optical polishing of the glass face sheet and testing.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Ultrahigh-Vacuum Arc-Jet Source of Nitrogen for Epitaxy

Electron-excitation and translational energies can be selected. An arc-jet source of chemically active nitrogen atoms has been developed for use in molecular-beam epitaxy (MBE) to grow such III-V semiconductors as nitrides of gallium, aluminum, and indium. This apparatus utilizes a confined arc to thermally excite N2 and to dissociate N2 into N atoms. This apparatus is compatible with other, ultrahigh-vacuum MBE equipment commonly used in growing such materials.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Scanning Thermography

Large objects can be scanned fairly quickly. Scanning thermography is a noncontact, nondestructive technique that makes it possible to find defects hidden inside structural components in a variety of settings. Scanning thermography can be used to perform inspections of objects that may have large areas and a variety of shapes and that are found in a variety of settings that include, but are not limited to, production lines, industrial tanks and pipes, aircraft, power plants, and bridges. Scanning thermography is applicable to diverse structural materials, including metals, plastics, laminated polymer-matrix composites, and bonded aluminum composites, to name a few. Defects that can be detected by scanning thermography include cracks, disbonds (delaminations), corrosion, and wear.

Posted in: Physical Sciences, Briefs

Read More >>

Compact System Detects Potentially Explosive Gas Mixtures

This system can be used in environments too severe for conventional leak detectors. The figure depicts selected aspects of a "smart" microelectronic-based hazardous-gas-detection system that simultaneously measures concentrations of hydrogen and oxygen. Unlike conventional gas-leak-detection systems built around mass spectrometers, this system is not restricted to operation in relatively mild and controlled laboratory or shop environments; instead, this system can operate over a range of temperatures and pressures. Also, in comparison with conventional mass-spectrometer-based leak-detection systems, this system is more robust and compact, weighs less, and consumes less power.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Microwave-Spectral Signatures Would Reveal Concealed Objects

This technique should prove superior to conventional ground-probing radar. A proposed technique for locating concealed objects (especially small antipersonnel land mines) involves the acquisition and processing of spectral signatures over broad microwave frequency bands. This technique was conceived to overcome the weaknesses of older narrow-band electromagnetic techniques like ground-probing radar and low-frequency electromagnetic induction.

Posted in: Physical Sciences, Briefs

Read More >>

Part 2 of a Computational Study of a Drop-Laden Mixing Layer

This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES)models.The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS).The DNS method and the data- tively coated thin electroactive-polymer (EAP)films be developed for use in spaceborne microwave and optical systems.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

White Papers

Metal Injection Molding Turns the Volume Up, and Down
Sponsored by Proto Labs
Windows CE Development for RISC Computers Made Easy
Sponsored by Sealevel
Next-Generation, Miniature High Voltage Power Modules
Sponsored by EMCO High Voltage
Learn LED Test Techniques
Sponsored by Keithley
Solar Electric Systems – Power Reliability
Sponsored by SunWize
Determining an Effective Analog Sampling Rate
Sponsored by Sealevel

White Papers Sponsored By: