Physical Sciences

Nonlinear FEA Analysis of Filament-Wound Composite Container Tanks

Filament-wound composites are replacing metals as the material of choice for tanks to hold liquids and gases. The composites have a high strength-to- weight ratio, making them ideal for use in aerospace and commercial ground transport. Also, the automated winding process is less expensive than other manufacturing methods for composites.

Posted in: Briefs

Read More >>

Pseudoslit Spectrometer

Functioning similarly to a slit spectrometer, this instrument would be optomechanically simpler. The pseudoslit spectrometer is a conceptual optoelectronic instrument that would offer some of the advantages, without the disadvantages, of prior linear- variable etalon (LVE) spectrometers and prior slit spectrometers. The pseudoslit spectrometer is so named because it would not include a slit, but the combined effects of its optical components would include a spatial filtering effect approximately equivalent to that of a slit.

Posted in: Briefs

Read More >>

Waste-Heat-Driven Cooling Using Complex Compound Sorbents

Development of improved sorbents revives a long-neglected heat-pump concept. Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas.

Posted in: Briefs

Read More >>

Role of Meteorology in Flights of a Solar-Powered Airplane

Meteorological support helped ensure safety and success of experimental high-altitude flights. In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety.

Posted in: Briefs

Read More >>

Model of Mixing Layer With Multicomponent Evaporating Drops

Effects of multiple chemical components are represented with computational efficiency. A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The study is motivated by the fact that typical real petroleum fuels contain hundreds of chemical species. Previously, for the sake of computational efficiency, spray studies were performed using either models based on a single representative species or models based on surrogate fuels of at most 15 species. The present multicomponent model makes it possible to perform more realistic simulations by accounting for hundreds of chemical species in a computationally efficient manner.

Posted in: Briefs, TSP

Read More >>

Ultraviolet-Absorption Spectroscopic Biofilm Monitor

Continuous monitoring could provide early warnings of potentially harmful buildups of bacteria. An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes.

Posted in: Briefs, TSP

Read More >>

Miniature Radioisotope Thermoelectric Power Cubes

These devices could supply power at extremely low temperatures for years. Cube-shaped thermoelectric devices energized by a particles from radioactive decay of 244Cm have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of 244Cm is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.

Posted in: Briefs, TSP

Read More >>