Physical Sciences

Freeze-Tolerant Condensers

Two designs offer similar advantages. Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Champagne Heat Pump

Relatively safe and environmentally benign working fluids can be used.  The term "champagne heat pump" denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

The StarLight Space Interferometer

Two papers describe the StarLight space interferometer — a Michelson interferometer that would be implemented by two spacecraft flying in formation. The StarLight formation flying interferometer project has been testing and demonstrating engineering concepts for a new generation of space interferometers that would be employed in a search for extrasolar planets and in astrophysical investigations. As described in the papers, the original StarLight concept called for three spacecraft, and the main innovation embodied is a modification that makes it possible to reduce complexity by eliminating the third spacecraft. The main features of the modification are (1) introduction of an optical delay line on one spacecraft and (2) controlling the flying formation such that the two spacecraft are located at two points along a specified parabola so as to define the required baseline of specified length (which could be varied up to 125 m) perpendicular to the axis of the parabola. One of the papers presents a detailed description of the optical layout and discusses computational modeling of the performance; the other paper presents an overview of the requirements for operation and design, the overall architecture, and subsystems.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Controllable Sonar Lenses and Prisms Based on ERFs

Compact devices without moving parts would focus and steer acoustic beams.  Sonar-beam-steering devices of the proposed type would contain no moving parts and would be considerably smaller and less power-hungry, relative to conventional multiple-beam sonar arrays. The proposed devices are under consideration for installation on future small autonomous underwater vehicles because the sizes and power demands of conventional multiple-beam arrays are excessive, and motors used in single-beam mechanically scanned systems are also not reliable. 

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Relative-Motion Sensors and Actuators for Two Optical Tables

Relative motions can be suppressed or imposed on demand. Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Improved Position Sensor for Feedback Control of Levitation

In this application, an incandescent light bulb is preferable to a laser. An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless processing system. As explained below, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object.

Posted in: Physical Sciences, Briefs

Read More >>

Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

Lower TC s should translate to lower noise and lower required local-oscillator power. A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/ normal-conducting transition in a thin strip of niobium and that was described in “Diffusion-Cooled Hot-Electron Bolometer Mixer” (NPO-19719), NASA Tech Briefs, Vol. 21, No. 1 (January 1997), page 12a.

Posted in: Physical Sciences, Briefs, TSP

Read More >>