Physical Sciences

System for Testing Thermal Insulation of Pipes

Thermal and flow conditions are carefully controlled to minimize errors. An apparatus and method have been developed for measuring the rates of leakage of heat into pipes carrying liquids, the purpose of the measurements being to quantify the thermal performance of the insulation system. The apparatus is designed primarily for testing pipes used to carry cryogenic liquids, but can also be used for measuring the thermal performance of other insulated pipes or piping systems.

Posted in: Briefs, TSP

Read More >>

Scaling of Two-Phase Flows to Partial-Earth Gravity

A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid- properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

Posted in: Briefs, TSP

Read More >>

Swarms of Micron-Sized Sensors

A paper presents the concept of swarms of micron-sized and smaller carriers of sensing equipment, denoted generally as controllable granular matter, to be used in exploring remote planets and interplanetary space. The design and manufacture of controllable granular matter would exploit advances in microelectromechanical systems and nanotechnology. Depending on specific designs and applications, controllable granular matter could have characteristics like those of powders, sands, or aerosols, which would be dispersed into the environments to be explored: For example, sensory grains could be released into orbit around a planet, spread out over ground, or dispersed into wind or into a body of liquid. The grains would thus become integral parts of multiphase environments, where they would function individually and/or collectively to gather information about the environments. In cases of clouds of grains dispersed in outer space, it may be feasible to use laser beams to shape the clouds to perform specific functions. To enable the full utilization of controllable granular matter, it is necessary to advance the knowledge of the dynamics and controllable characteristics of both individual grains and the powders, sands, or aerosols of which they are parts.

Posted in: Briefs, TSP

Read More >>

Three-Dimensional Venturi Sensor for Measuring Extreme Winds

Advantageous features include ruggedness, rapid response, and high dynamic range. A three-dimensional (3D) Venturi sensor is being developed as a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). This sensor also incorporates auxiliary sensors for measuring temperature from -40 to +120 °F (-40 to +49 °C), relative humidity from 0 to 100 percent, and atmospheric pressure from 846 to 1,084 millibar (85 to 108 kPa).

Posted in: Briefs, TSP

Read More >>

Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

Vibration of the mask against the wearer's nose warns of low oxygen pressure. A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen-distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years.

Posted in: Briefs, TSP

Read More >>

Automated Serial Sectioning for 3D Reconstruction

Automation increases speed and reduces uncertainty in alignment. Figure 1 depicts some aspects of an apparatus and method for automated serial sectioning of a specimen of a solder, aluminum, or other relatively soft opaque material. The apparatus includes a small milling machine (micromiller) that takes precise, shallow cuts (increments of depth as small as 1 μm) to expose successive sections. A microscope equipped with an electronic camera, mounted in a fixed position on the micromiller, takes pictures of the newly exposed specimen surface at each increment of depth. The images are digitized, and the resulting data are subsequently processed to reconstruct three-dimensional (3D) features of the specimen.

Posted in: Briefs, TSP

Read More >>

Tilt-Sensitivity Analysis for Space Telescopes

A report discusses a computational- simulation study of phase- front propagation in the Laser Interferometer Space Antenna (LISA), in which space telescopes would transmit and receive metrological laser beams along 5-Gm interferometer arms. The main objective of the study was to determine the sensitivity of the average phase of a beam with respect to fluctuations in pointing of the beam. The simulations account for the effects of obscurations by a secondary mirror and its supporting struts in a telescope, and for the effects of optical imperfections (especially tilt) of a telescope. A significant innovation introduced in this study is a methodology, applicable to space telescopes in general, for predicting the effects of optical imperfections. This methodology involves a Monte Carlo simulation in which one generates many random wavefront distortions and studies their effects through computational simulations of propagation. Then one performs a statistical analysis of the results of the simulations and computes the functional relations among such important design parameters as the sizes of distortions and the mean value and the variance of the loss of performance. These functional relations provide information regarding position and orientation tolerances relevant to design and operation.

Posted in: Briefs, TSP

Read More >>