Physical Sciences

Silicon Membrane Mirrors With Electrostatic Shape Actuators

Precise shapes could be maintained over a wide temperature range. Efforts are under way to develop deformable mirrors equipped with microscopic electrostatic actuators that would be used to maintain their reflective surfaces in precise shapes required for their intended applications. Unlike actuators that depend on properties of materials (e.g., piezoelectric and electrostrictive actuators), electrostatic actuators are effective over a wide temperature range. A mirror of the present type would be denoted a MEMS-DM (for microelectromechanical system deformable mirror). The reflective surface of such a mirror would be formed on a single-crystal silicon membrane that would be attached by posts to a silicon actuator membrane that would, in turn, be attached by posts to a rigid silicon base (see figure).

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Nanoscale Hot-Wire Probes for Boundary-Layer Flows

Flow parameters near walls would be measured with unprecedented resolution. Hot-wire probes having dimensions of the order of nanometers have been proposed for measuring temperatures (and possibly velocities) in boundary-layer flows at spatial resolutions much finer and distances from walls much smaller than have been possible heretofore. The achievable resolutions and minimum distances are expected to be of the order of tens of nanometers — much less than a typical mean free path of a molecule and much less than the thickness of a typical flow boundary layer in air at standard temperature and pressure. An additional benefit of the small scale of these probes is that they would perturb the measured flows less than do larger probes.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Evaluation of Charge Storage and Decay in Spacecraft Insulators

Two reports discuss methods for evaluating the magnitude of electrostatic charging that occurs in spacecraft dielectric materials (in particular, polyimides) during prolonged exposure to radiation in outer space. The reports describe experiments on the electrical resistivities and charge-storage properties of polyimide specimens in a dark, evacuated environment, both before and after 5-megarad exposures to Υ rays from cobalt-60. The experiments were designed to measure these properties not under standard conditions prescribed for testing dielectrics in air but, rather, under conditions approximating those in the intended spacecraft applications. The results of the experiments showed that the electrical resistivities of the insulations as determined under these conditions are greater, by a factor of roughly a thousand, than those determined under the standard conditions and that the g irradiation reduced resistivities marginally.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Instrument for Measuring Temperature of Water

An infrared radiometer is able to view water as an almost pure blackbody source. A pseudo-Brewster- angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform.

Posted in: Physical Sciences, Briefs

Read More >>

Improved Measurement of Coherence in Presence of Instrument Noise

The coherence function can be measured more accurately by accounting for the effects of instrument noise. A method for correcting measured coherence spectra for the effect of incoherent instrument noise has been developed and demonstrated. Coherence measurements are widely used in engineering and science to determine the extent to which two signals are alike. The signals may come from two different sources or from the same source at different times. The coherence of time- lagged signals from a single source is an excellent indication of the effective lifetime of the signal components as a function of their frequency. Unfortunately, incoherent instrument noise will bias the measurement to lower values and may lead the user of the data to false conclusions about the longevity of significant features.

Posted in: Physical Sciences, Briefs

Read More >>

Compact Instruments Measure Helium-Leak Rates

Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal-conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

Posted in: Physical Sciences, Briefs

Read More >>

Microscale Thermal-Transpiration Gas Pump

This is a prototype of miniature vacuum pumps with no moving parts. A recent addition to the growing class of microelectromechanical systems (MEMS) is a single stage of a Knudsen compressor. This device was fabricated and tested to demonstrate the feasibility of Knudsen compressors as miniature vacuum pumps for future portable scientific instruments. The attributes of Knudsen compressors that make them attractive as miniature vacuum pumps are that they contain no moving parts and operate without need for lubricants or working fluids.

Posted in: Physical Sciences, Briefs, TSP

Read More >>