Physical Sciences

Module for Oxygenating Water Without Generating Bubbles

No bubbles were observed at any of the test flow rates. A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gastreatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase.

Posted in: Physical Sciences, Briefs

Read More >>

Selected Papers on Protoplanetary Disks

Three papers present studies of thermal balances, dynamics, and electromagnetic spectra of protoplanetary disks, which comprise gas and dust orbiting young stars. One paper addresses the reprocessing, in a disk, of photons that originate in the disk itself in addition to photons that originate in the stellar object at the center. The shape of the disk is found to strongly affect the redistribution of energy. Another of the three papers reviews an increase in the optical luminosity of the young star FU Orionis. The increase began in the year 1936 and similar increases have since been observed in other stars. The paper summarizes astronomical, meteoric, and theoretical evidence that these increases are caused by increases in mass fluxes through the inner portions of the protoplanetary disks of these stars. The remaining paper presents a mathematical-modeling study of the structures of protostellar accretion disks, with emphasis on limits on disk flaring. Among the conclusions reached in the study are that (1) the radius at which a disk becomes shadowed from its central stellar object depends on radial mass flow and (2) most planet formation has occurred in environments unheated by stellar radiation.

Posted in: Physical Sciences, Briefs

Read More >>

Part 1 of a Computational Study of a Drop-Laden Mixing Layer

This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.

Posted in: Physical Sciences, Briefs

Read More >>

Compensating for Effects of Humidity on Electronic Noses

Corrections are derived from outputs of separate humidity and temperature sensors.A method of compensating for the effects of humidity on the readouts of electronic noses has been devised and tested. The method is especially appropriate for use in environments in which humidity is not or cannot be controlled — for example, in the vicinity of a chemical spill, which can be accompanied by large local changes in humidity.

Posted in: Physical Sciences, Briefs

Read More >>

Brush/Fin Thermal Interfaces

High thermal conductance sliding interfaces can be achieved.Brush/fin thermal interfaces are being developed to increase heat-transfer efficiency and thereby enhance the thermal management of orbital replaceable units (ORUs) of electronic and other equipment aboard the International Space Station. Brush/fin thermal interfaces could also be used to increase heat-transfer efficiency in terrestrial electronic and power systems.

Posted in: Physical Sciences, Briefs

Read More >>

Multispectral Scanner for Monitoring Plants

A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected- light spectral signature known to be indicative of the health of the plants. In a gene-transfer-monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

Posted in: Physical Sciences, Briefs

Read More >>

Improved Cryostat for Cooling a Wide Panel

Less technician time and lower consumption of helium translate to lower cost.An improved cryostat has been developed for cooling a wide panel evenly over its surface to a temperature of -423 °F (-253 °C) by use of liquid helium. Originally, the cryostat was to be used in measuring apparent strains in wide aluminum/ lithium panels as functions of temperature in order to develop data for temperature compensation of the readings of strain gauges on a tank containing liquid hydrogen. Relative to the cryostat used previously for this purpose, the improved cryostat can be prepared for a test in less time, and it loses less helium during each test.

Posted in: Physical Sciences, Briefs

Read More >>