Physical Sciences

Improved High-Voltage Gas Isolator for Ion Thruster

A report describes an improved highvoltage isolator for preventing electrical discharge along the flow path of a propellant gas being fed from a supply at a spacecraft chassis electrical potential to an ion thruster at a potential as high as multiple kilovolts. The isolator must survive launch vibration and must remain electrically nonconductive for thousands of hours under conditions that, in the absence of proper design, would cause formation of electrically conductive sputtered metal, carbon, and/or decomposed hydrocarbons on its surfaces.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Antenna for Measuring Electric Fields Within the Inner Heliosphere

A document discusses concepts for the design of an antenna to be deployed from a spacecraft for measuring the ambient electric field associated with plasma waves at a location within 3 solar radii from the solar photosphere. The antenna must be long enough to extend beyond the photoelectron and plasma sheaths of the spacecraft (expected to be of the order of meters thick) and to enable measurements at frequencies from 20 Hz to 10 MHz without contamination by spacecraft electric-field noise. The antenna must, therefore, extend beyond the thermal protection system (TPS) of the main body of the spacecraft and must withstand solar heating to a temperature as high as 2,000 °C while not conducting excessive heat to the interior of the spacecraft.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Theoretical Studies of Routes to Synthesis of Tetrahedral N4

A paper [Chem. Phys. Lett. 345, 295 (2001)] describes theoretical studies of excited electronic states of nitrogen molecules, with a view toward utilizing those states in synthesizing tetrahedral N4, or Td N4 — a metastable substance under consideration as a high-energy-density rocket fuel. Several ab initio theoretical approaches were followed in these studies, including complete active space selfconsistent field (CASSCF), state-averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with secondorder and third-order correlation corrections [CIS(D) and CIS(3)], and linear response singles and doubles coupledcluster (LRCCSD). Standard double zeta polarized and triple zeta double polarized one-particle basis sets were used.

Posted in: Physical Sciences, Briefs

Read More >>

Fiber-Optic Ammonia Sensors

Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity.

Posted in: Physical Sciences, Briefs

Read More >>

Silicon Membrane Mirrors With Electrostatic Shape Actuators

Precise shapes could be maintained over a wide temperature range. Efforts are under way to develop deformable mirrors equipped with microscopic electrostatic actuators that would be used to maintain their reflective surfaces in precise shapes required for their intended applications. Unlike actuators that depend on properties of materials (e.g., piezoelectric and electrostrictive actuators), electrostatic actuators are effective over a wide temperature range. A mirror of the present type would be denoted a MEMS-DM (for microelectromechanical system deformable mirror). The reflective surface of such a mirror would be formed on a single-crystal silicon membrane that would be attached by posts to a silicon actuator membrane that would, in turn, be attached by posts to a rigid silicon base (see figure).

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Nanoscale Hot-Wire Probes for Boundary-Layer Flows

Flow parameters near walls would be measured with unprecedented resolution. Hot-wire probes having dimensions of the order of nanometers have been proposed for measuring temperatures (and possibly velocities) in boundary-layer flows at spatial resolutions much finer and distances from walls much smaller than have been possible heretofore. The achievable resolutions and minimum distances are expected to be of the order of tens of nanometers — much less than a typical mean free path of a molecule and much less than the thickness of a typical flow boundary layer in air at standard temperature and pressure. An additional benefit of the small scale of these probes is that they would perturb the measured flows less than do larger probes.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Evaluation of Charge Storage and Decay in Spacecraft Insulators

Two reports discuss methods for evaluating the magnitude of electrostatic charging that occurs in spacecraft dielectric materials (in particular, polyimides) during prolonged exposure to radiation in outer space. The reports describe experiments on the electrical resistivities and charge-storage properties of polyimide specimens in a dark, evacuated environment, both before and after 5-megarad exposures to Υ rays from cobalt-60. The experiments were designed to measure these properties not under standard conditions prescribed for testing dielectrics in air but, rather, under conditions approximating those in the intended spacecraft applications. The results of the experiments showed that the electrical resistivities of the insulations as determined under these conditions are greater, by a factor of roughly a thousand, than those determined under the standard conditions and that the g irradiation reduced resistivities marginally.

Posted in: Physical Sciences, Briefs, TSP

Read More >>