Physical Sciences

Scanning Thermography

Large objects can be scanned fairly quickly. Scanning thermography is a noncontact, nondestructive technique that makes it possible to find defects hidden inside structural components in a variety of settings. Scanning thermography can be used to perform inspections of objects that may have large areas and a variety of shapes and that are found in a variety of settings that include, but are not limited to, production lines, industrial tanks and pipes, aircraft, power plants, and bridges. Scanning thermography is applicable to diverse structural materials, including metals, plastics, laminated polymer-matrix composites, and bonded aluminum composites, to name a few. Defects that can be detected by scanning thermography include cracks, disbonds (delaminations), corrosion, and wear.

Posted in: Physical Sciences, Briefs

Read More >>

Compact System Detects Potentially Explosive Gas Mixtures

This system can be used in environments too severe for conventional leak detectors. The figure depicts selected aspects of a "smart" microelectronic-based hazardous-gas-detection system that simultaneously measures concentrations of hydrogen and oxygen. Unlike conventional gas-leak-detection systems built around mass spectrometers, this system is not restricted to operation in relatively mild and controlled laboratory or shop environments; instead, this system can operate over a range of temperatures and pressures. Also, in comparison with conventional mass-spectrometer-based leak-detection systems, this system is more robust and compact, weighs less, and consumes less power.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Microwave-Spectral Signatures Would Reveal Concealed Objects

This technique should prove superior to conventional ground-probing radar. A proposed technique for locating concealed objects (especially small antipersonnel land mines) involves the acquisition and processing of spectral signatures over broad microwave frequency bands. This technique was conceived to overcome the weaknesses of older narrow-band electromagnetic techniques like ground-probing radar and low-frequency electromagnetic induction.

Posted in: Physical Sciences, Briefs

Read More >>

Part 2 of a Computational Study of a Drop-Laden Mixing Layer

This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES)models.The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS).The DNS method and the data- tively coated thin electroactive-polymer (EAP)films be developed for use in spaceborne microwave and optical systems.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Digital Averaging Phasemeter for Heterodyne Interferometry

One instrument performs functions for which separate instruments were previously needed. A digital averaging phasemeter has been built for measuring the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. This phasemeter performs well enough to enable interferometric measurements of distance with accuracy of the order of 100 pm and with the ability to track distance as it changes at a speed of as much as 50 cm/s. This phasemeter is unique in that it is a single, integral system capable of performing three major functions that, heretofore, have been performed by separate systems: (1) measurement of the fractional-cycle phase difference, (2) counting of multiple cycles of phase change, and (3) averaging of phase measurements over multiple cycles for improved resolution. This phasemeter also offers the advantage of making repeated measurements at a high rate: the phase is measured on every heterodyne cycle. Thus, for example, in measuring the relative phase of two signals having a heterodyne frequency of 10 kHz, the phasemeter would accumulate 10,000 measurements per second. At this high measurement rate, an accurate average phase determination can be made more quickly than is possible at a lower rate.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Imaging of ³-Irradiated Regions of a Crystal

Electron-trapping and photorefractive effects are exploited. A holographic technique has been devised for generating a visible display of the effect of exposure of a photorefractive crystal to γ-rays. The technique exploits the space charge that results from trapping of electrons in defects induced by  γ rays.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Rapid Chemometric Filtering of Spectral Data

Target species would be identified in real time.   A method of rapid, programmable filtering of spectral transmittance, reflectance, or fluorescence data to measure the concentrations of chemical species has been proposed. By "programmable" is meant that a variety of spectral analyses can readily be performed and modified in software, firmware, and/or electronic hardware, without need to change optical filters or other optical hardware of the associated spectrometers. The method is intended to enable real-time identification of single or multiple target chemical species in applications that involve high-throughput screening of multiple samples. Examples of such applications include (but are not limited to) combinatorial chemistry, flow cytometry, bead assays, testing drugs, remote sensing, and identification of targets.

Posted in: Physical Sciences, Briefs, TSP

Read More >>