Physical Sciences

Silicon Membrane Mirrors With Electrostatic Shape Actuators

Precise shapes could be maintained over a wide temperature range. Efforts are under way to develop deformable mirrors equipped with microscopic electrostatic actuators that would be used to maintain their reflective surfaces in precise shapes required for their intended applications. Unlike actuators that depend on properties of materials (e.g., piezoelectric and electrostrictive actuators), electrostatic actuators are effective over a wide temperature range. A mirror of the present type would be denoted a MEMS-DM (for microelectromechanical system deformable mirror). The reflective surface of such a mirror would be formed on a single-crystal silicon membrane that would be attached by posts to a silicon actuator membrane that would, in turn, be attached by posts to a rigid silicon base (see figure).

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Fiber-Optic Ammonia Sensors

Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity.

Posted in: Briefs, Physical Sciences

Read More >>

Compact System Detects Potentially Explosive Gas Mixtures

This system can be used in environments too severe for conventional leak detectors. The figure depicts selected aspects of a "smart" microelectronic-based hazardous-gas-detection system that simultaneously measures concentrations of hydrogen and oxygen. Unlike conventional gas-leak-detection systems built around mass spectrometers, this system is not restricted to operation in relatively mild and controlled laboratory or shop environments; instead, this system can operate over a range of temperatures and pressures. Also, in comparison with conventional mass-spectrometer-based leak-detection systems, this system is more robust and compact, weighs less, and consumes less power.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Scanning Thermography

Large objects can be scanned fairly quickly. Scanning thermography is a noncontact, nondestructive technique that makes it possible to find defects hidden inside structural components in a variety of settings. Scanning thermography can be used to perform inspections of objects that may have large areas and a variety of shapes and that are found in a variety of settings that include, but are not limited to, production lines, industrial tanks and pipes, aircraft, power plants, and bridges. Scanning thermography is applicable to diverse structural materials, including metals, plastics, laminated polymer-matrix composites, and bonded aluminum composites, to name a few. Defects that can be detected by scanning thermography include cracks, disbonds (delaminations), corrosion, and wear.

Posted in: Briefs, Physical Sciences

Read More >>

Ultrahigh-Vacuum Arc-Jet Source of Nitrogen for Epitaxy

Electron-excitation and translational energies can be selected. An arc-jet source of chemically active nitrogen atoms has been developed for use in molecular-beam epitaxy (MBE) to grow such III-V semiconductors as nitrides of gallium, aluminum, and indium. This apparatus utilizes a confined arc to thermally excite N2 and to dissociate N2 into N atoms. This apparatus is compatible with other, ultrahigh-vacuum MBE equipment commonly used in growing such materials.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Lightweight Mirrors for Orbiting Earth-Observing Instruments

A report discusses selected aspects of a continuing program to develop thermally stable, lightweight mirrors for planned Earth-observing spaceborne instruments. These mirrors are required to retain precise concave or convex surface figures required for diffraction-limited optical performance, even in the presence of transient, asymmetric thermal loads, which include solar heating and radiational cooling. In the first phase of the program, preliminary analyses were performed to select one of three types of mirror structures: one made of SiC, one made of Be, and a hybrid comprising a lightweight composite-material substructure supporting a glass face sheet that would be a substrate for the required precise optical surface. The hybrid structure was selected for further development because it would offer a combination of high stiffness and low mass and because, relative to the Be and SiC structures, (1) the coefficients of thermal expansion of its constituent materials and the resulting wavefront error would be smaller, and (2) it could be fabricated at lower cost. A prototype hybrid structure with an aperture diameter of 0.3 m was fabricated. Planned efforts in the next phase of the program include optical polishing of the glass face sheet and testing.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Electrostatic/Electrodynamic Nanoparticle-Capture Vessel

Particles could be sampled under remote or automatic control in harsh environments. A proposed simple, portable, robust apparatus, capable of automated operation, has been proposed for collecting samples of selected biological or chemical species in harsh environments. The sampled species could range in size from molecules to nanoparticles (that is, particles with dimensions of the order of nanometers). The apparatus would select a biological or chemical species of interest for sampling by utilizing a combination of (1) electrostatic or electrodynamic fields and (2) a sieve containing holes of predetermined size.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.