Physical Sciences

LVGEMS Time-of-Flight Mass Spectrometry on Satellites

This technology has applications in plant contaminant monitoring, clinical and medical diagnostics, and homeland security and defense. NASA’s investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4×4 in. (≈10×10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination.

Posted in: Physical Sciences, Briefs

Read More >>

Surface Inspection Tool for Optical Detection of Surface Defects

The small, dual-picture tool enables both macro and micro views. The Space Shuttle Orbiter windows were damaged both by micrometeor impacts and by handling, and required careful inspection before they could be reused. The launch commit criteria required that no defect be deeper than a critical depth. The shuttle program used a refocus microscope to perform a quick pass/fail determination, and then followed up with mold impressions to better quantify any defect. However, the refocus microscope is slow and tedious to use due to its limited field of view, only focusing on one small area of glass at a time. Additionally, the unit is bulky and unable to be used in areas with tight access, such as defects near the window frame or on the glass inside the Orbiter due to interference with the dashboard. Bulky camera equipment was needed to acquire images for later processing and storage. The long depth of field of the refocus microscope provided crisp images of the defect, but didn’t provide the user with a feel for depth of the defect since all parts of the image appear in focus.

Posted in: Physical Sciences, Briefs

Read More >>

Per-Pixel, Dual-Counter Scheme for Optical Communications

Per-pixel processing scheme for single-photon detectors would require 10 to 100 times less beacon transmit power. Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels. For the highest pointing accuracy, a laser beacon transmitted from near the Earth receiver location is acquired and tracked by the space transceiver to obtain accurate knowledge of the Earth receiver position in the pitch and yaw degrees of freedom. This pointing knowledge is generated by forming estimates of the beacon transmitter location by centroiding the position of a focused spot on a focal plane detector array in the space transceiver, perhaps a two-by-two pixel array (a quad detector), but often on a larger array to ease initial spatial acquisition. The accuracy of those estimates, and, therefore, the accuracy of the space transceiver pointing, is a function of the received optical signal power, accepted optical background power, and detector readout noise. The centroiding performance of a typical focal plane array can be 10 to 100 times poorer than the shot noise limit due to readout noise. A focal plane array of single-photon detectors can fully close this gap, and thereby require 10 to 100 times less beacon transmit power, but specialized per-pixel processing circuitry is required.

Posted in: Physical Sciences, Briefs

Read More >>

Spacecraft Crew Cabin Condensation Control

A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall.

Posted in: Physical Sciences, Briefs

Read More >>

Data Compression Algorithm Architecture for Large Depth-of- Field Particle Image Velocimeters

A large depth-of-field particle image velocimeter (PIV) is designed to characterize dynamic dust environments on planetary surfaces. This instrument detects lofted dust particles, and senses the number of particles per unit volume, measuring their sizes, velocities (both speed and direction), and shape factors when the particles are large. To measure these particle characteristics in-flight, the instrument gathers twodimensional image data at a high frame rate, typically >4,000 Hz, generating large amounts of data for every second of operation, approximately 6 GB/s.

Posted in: Physical Sciences, Briefs

Read More >>

Practical UAV Optical Sensor Bench With Minimal Adjustability

A multiple-pass optical platform eliminates essentially all optical alignment degrees of freedom, save one. A fourpass absorption spectrometer architecture is made rigid by firmly mounting dielectric-coated mirror prisms with no alignment capability to the platform. The laser diode beam is collimated by a small, custom-developed lens, which has only a rotational degree of freedom along the standard optical “z” axis. This degree is itself eliminated by adhesive after laser collimation. Only one degree of freedom is preserved by allowing the laser diode chip and mount subassembly to move relative to the collimating lens by using over-sized mounting holes. This allows full 360° motion of a few millimeters relative to the lens, which, due to the high numerical aperture of the lens, provides wide directional steering of the collimated laser beam.

Posted in: Physical Sciences, Photonics, Briefs

Read More >>

Rover Low Gain Antenna Qualification for Deep Space Thermal Environments

A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate.

Posted in: Physical Sciences, Test & Measurement, Briefs

Read More >>