Physical Sciences

Watching Alloys Change Could Lead to Better Metals

If you put a camera in the ice machine and watched water turn into ice, the process would look simple. But the mechanism behind liquids turning to solids is actually quite complex, and understanding it better could improve design and production of metals. A recent investigation aboard the International Space Station (ISS) involved experiments using transparent alloys to observe microstructures that form at the point the material solidifies.

Posted in: UpFront, Materials, Physical Sciences


Hydrogen Peroxide for Microbial Growth Control in Space Potable Water Systems

This on-demand generator can provide the needed hydrogen peroxide levels for microbial growth control in potable water holding tanks and waterlines. Marshall Space Flight Center, Alabama NASA uses a biocide to prevent contamination of astronaut drinking water with harmful microorganisms. Concerns have arisen over existing biocides — that they’re inadequately effective, and may have toxic side effects when consumed. New microbial control methods are a priority. This need is addressed by using an electrochemical reactor for on-demand generation of hydrogen peroxide (H2O2) solutions. The device uses onboard resources only. The method eliminates the need for resupply items (reducing launch costs), and reduces toxicity risk.

Posted in: Briefs, Aerospace, Green Design & Manufacturing, Physical Sciences


Method of Water Regeneration From Waste and Cascade Distillation

Lyndon B. Johnson Space Center, Houston, Texas Effective recovery of potable water from various streams and sources of wastewater, seawater, or contaminated water is a significant task for securing existence of human beings in space, terrestrial, and marine environments. Efficient purification of the wastewater is also a very important task for protection of the global environment. The existing and known methods of recovery of clean water from the wastewater are technically complicated, have low energy efficiency, consume processing material, and are bulky, heavy, and not cost effective.

Posted in: Briefs, Green Design & Manufacturing, Recycling Technologies, Physical Sciences


Optical Fiber for Solar Cells

These materials enable new solar-powered devices that are small, lightweight, and can be used without connection to existing electrical grids. Ames Research Center, Moffett Field, California Polymeric and inorganic semiconductors offer relatively high quantum efficiencies, and are much less expensive and versatile to fabricate than non-amorphous silicon wafers. An optical fiber and cladding can be designed and fabricated to confine light for transport within ultraviolet and near-infrared media, using evanescent waves, and to transmit visible wavelength light for direct lighting.

Posted in: Briefs, Energy, Energy Storage, Solar Power, Materials, Fiber Optics, Physical Sciences


Pumped Subsea Energy Storage

This technique would be applicable to offshore oil platforms and energy storage for public utilities. NASA’s Jet Propulsion Laboratory, Pasadena, California A local energy source is desired for near-shore and offshore applications. Gas generators, diesel generators, and long-length submerged power cables tend to be expensive. A proposed solution is to use offshore wind with some type of energy storage mechanism for up to 1 GW-h. Energy storage in batteries is too expensive and massive, and subsea compressed air energy storage (CAES) has not been proven for very deep depths. Furthermore, CAES involves very great temperature changes that result in large inefficiencies.

Posted in: Briefs, TSP, Energy, Energy Efficiency, Energy Storage, Solar Power, Wind Power, Physical Sciences


Carbon Nanotube Tower-Based Supercapacitor

A new technology to create electrochemical double-layer supercapacitors is provided using carbon nanotubes as electrodes of the storage medium. This invention allows efficient transport between the capacitor electrodes through the porous nature of the nanotubes, and has a low interface resistance between the electrode material and the collector. Carbon nanotubes directly grown on a metal surface are used to improve the supercapacitor performance. The nanotubes offer a high surface area and usable porosity for a given volume and mass, both of which are highly desirable for supercapacitor operation.

Posted in: Briefs, Energy, Energy Storage, Materials, Nanotechnology, Physical Sciences


A Continuous-Flow, Microfluidic, Microwave-Assisted Chemical Reactor

The reactor uses a directed 60-GHz source, which may require far less power to observe the same reactivity profiles. NASA’s Jet Propulsion Laboratory, Pasadena, California In industrial synthetic chemistry laboratories, reactions are generally carried out using batch-mode methodologies, stepwise reactions, and purifications to generate a final product. Each step has an associated yield of both the reaction itself and of the final purification that is largely dependent on the procedure being used, and the scientist carrying out the procedure. Continuous-flow reactors are one way of streamlining the process. Furthermore, microwave-enhanced, or microwave-assisted, chemistry has been demonstrated to aid in many of these areas; however, scaling has been a traditional problem with this technique.

Posted in: Articles, Briefs, TSP, Instrumentation, Physical Sciences, RF & Microwave Electronics, Test & Measurement


White Papers

Evaluating Electrically Insulating Epoxies
Sponsored by Master Bond
Antenna Basics
Sponsored by Rohde and Schwarz AD
Critical Techniques for High-Speed A/D Converters in Real-Time Systems
Sponsored by Pentek
The Truth about Parylene Coating & Medical Devices
Sponsored by Diamond-MT
Force Sensors For Design
Sponsored by Tekscan
ISO 13485 - The proposed changes and what they mean for you
Sponsored by BSI

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.