RF & Microwave Electronics

Researchers Control Surface Tension of Liquid Metals

Researchers from North Carolina State University have developed a technique for controlling the surface tension of liquid metals by applying very low voltages, opening the door to a new generation of reconfigurable electronic circuits, antennas and other technologies. The technique hinges on the fact that the oxide “skin” of the metal – which can be deposited or removed – acts as a surfactant, lowering the surface tension between the metal and the surrounding fluid.The researchers used a liquid metal alloy of gallium and indium. In base, the bare alloy has a remarkably high surface tension of about 500 millinewtons (mN)/meter, which causes the metal to bead up into a spherical blob. “But we discovered that applying a small, positive charge – less than 1 volt – causes an electrochemical reaction that creates an oxide layer on the surface of the metal, dramatically lowering the surface tension from 500 mN/meter to around 2 mN/meter,” says Dr. Michael Dickey, an associate professor of chemical and biomolecular engineering at NC State and senior author of a paper describing the work. “This change allows the liquid metal to spread out like a pancake, due to gravity.”The researchers also showed that the change in surface tension is reversible. If researchers flip the polarity of the charge from positive to negative, the oxide is eliminated and high surface tension is restored.  The surface tension can be tuned between these two extremes by varying the voltage in small steps.SourceAlso: Learn about Gradient Metal Alloys Fabricated Using Additive Manufacturing.

Posted in: Electronics & Computers, Electronics, Power Management, Materials, Metals, RF & Microwave Electronics, Antennas, News


NASA Tests Robot Swarms for Autonomous Movement

NASA engineers and interns are testing a group of robots and related software that will show whether it's possible for autonomous machines to scurry about an alien world such as the Moon, searching for and gathering resources just as an ant colony does.

Posted in: Electronics & Computers, Motion Control, Software, Communications, Wireless, Machinery & Automation, Robotics, RF & Microwave Electronics, Antennas, News


DARPA Teams With Industry to Create Spaceplane

DARPA has created an Experimental Spaceplane (XS-1) to create a new paradigm for more routine, responsive, and affordable space operations. In an important step toward that goal, DARPA has awarded prime contracts for Phase 1 of XS-1 to three companies: The Boeing Company (working with Blue Origin, LLC), Masten Space Systems (working with XCOR Aerospace), and Northrop Grumman Corporation (working with Virgin Galactic).

Posted in: Aerospace, Aviation, Machinery & Automation, Robotics, RF & Microwave Electronics, Defense, News


Researchers Develop Solar Technologies, Origami-Style

As a high school student at a study program in Japan, Brian Trease would fold wrappers from fast-food cheeseburgers into cranes. He loved discovering different origami techniques in library books.Today, Trease, a mechanical engineer at NASA’s Jet Propulsion Laboratory in Pasadena, California, thinks about how the principles of origami could be used for space-bound devices.Researchers say origami could be useful one day in utilizing space solar power for Earth-based purposes. Imagine an orbiting power plant that wirelessly beams power down to Earth using microwaves. Sending the solar arrays up to space would be easy, Trease said, because they could all be folded and packed into a single rocket launch, with "no astronaut assembly required."Panels used in space missions already incorporate simple folds, collapsing like a fan or an accordion. But Trease and colleagues are interested in using more intricate folds that simplify the overall mechanical structure and make for easier deployment.Last year, Zirbel and Trease collaborated with origami expert Robert Lang and BYU professor Larry Howell to develop a solar array that folds up to be 8.9 feet (2.7 meters) in diameter. Unfold it, and you’ve got a structure 82 feet (25 meters) across.SourceAlso: Learn about Origami-Inspired Folding of Thick, Rigid Panels.

Posted in: Mechanical Components, Solar Power, Renewable Energy, Energy Harvesting, Energy, Aerospace, RF & Microwave Electronics, Antennas, News


NASA Engineer Set to Complete First 3D-Printed Space Cameras

By the end of September, NASA aerospace engineer Jason Budinoff is expected to complete the first imaging telescopes ever assembled almost exclusively from 3D-manufactured components.Under his multi-pronged project, funded by Goddard’s Internal Research and Development (IRAD) program, Budinoff is building a fully functional, 50-millimeter (2-inch) camera whose outer tube, baffles and optical mounts are all printed as a single structure. The instrument is appropriately sized for a CubeSat, a tiny satellite comprised of individual units each about four inches on a side. The instrument will be equipped with conventionally fabricated mirrors and glass lenses and will undergo vibration and thermal-vacuum testing next year.Budinoff also is assembling a 350-millimeter (14-inch) dual-channel telescope whose size is more representative of a typical space telescope.Should he prove the approach, Budinoff said NASA scientists would benefit enormously — particularly those interested in building infrared-sensing instruments, which typically operate at super-cold temperatures to gather the infrared light that can be easily overwhelmed by instrument-generated heat. Often, these instruments are made of different materials. However, if all the instrument’s components, including the mirrors, were made of aluminum, then many of the separate parts could be 3D printed as single structures, reducing the parts count and material mismatch. This would decrease the number of interfaces and increase the instrument’s stability.SourceAlso: Learn about an Image Processing Method To Determine Dust Optical Density.

Posted in: Cameras, Imaging, Photonics, Optics, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Aerospace, RF & Microwave Electronics, News


Army to Get New IED Detector Technology

Detecting improvised explosive devices in Afghanistan requires constant, intensive monitoring using rugged equipment. When Sandia researchers first demonstrated a modified miniature synthetic aperture radar (MiniSAR) system to do just that, some experts didn't believe it. But those early doubts are long gone. Sandia's Copperhead — a highly modified MiniSAR system mounted on unmanned aerial vehicles (UAVs) — has been uncovering IEDs in Afghanistan and Iraq since 2009. Now, according to senior manager Jim Hudgens, Sandia is transferring the technology to the U.S. Army to support combat military personnel.

Posted in: Electronics & Computers, Imaging, Sensors, Detectors, RF & Microwave Electronics, Antennas, Data Acquisition, Defense, News


Astronauts to Test Free-Flying Robotic 'Smart SPHERES'

Three bowling ball-size free-flying Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) have been flying inside the International Space Station since 2006. These satellites provide a test bed for development and research, each having its own power, propulsion, computer, navigation equipment, and physical and electrical connections for hardware and sensors for various experiments.Aboard Orbital Sciences Corp.'s second contracted commercial resupply mission to the space station, which arrived to the orbital laboratory on July 16, NASA's Ames Research Center in Moffett Field, California, sent two Google prototype Project Tango smartphones that astronauts will attach to the SPHERES for technology demonstrations inside the space station. By connecting a smartphone to the SPHERES, the technology becomes "Smart SPHERES, " a more "intelligent" free-flying robot with built-in cameras to take pictures and video, sensors to help conduct inspections, powerful computing units to make calculations and Wi-Fi connections to transfer data in real time to the computers aboard the space station and at mission control in Houston.In a two-phase experiment, astronauts will manually use the smartphones to collect visual data using the integrated custom 3-D sensor to generate a full 3-D model of their environment. After the map and its coordinate system are developed, a second activity will involve the smartphones attached to the SPHERES, becoming the free-flying Smart SPHERES. As the free-flying robots move around the space station from waypoint to waypoint, utilizing the 3-D map, they will provide situational awareness to crewmembers inside the station and flight controllers in mission control. These experiments allow NASA to test vision-based navigation in a very small mobile product.SourceAlso: Learn about Automatic Lunar Rock Detection and Mapping.

Posted in: Electronics & Computers, Power Management, PCs/Portable Computers, Cameras, Video, Visualization Software, Imaging, Sensors, Test & Measurement, Communications, Aerospace, Aviation, Machinery & Automation, Robotics, RF & Microwave Electronics, News


White Papers

Overcome Challenges of Your Highly Constrained PCB Designs
Sponsored by Mentor Graphics
Overcoming the Barriers Imposed by Geometry
Sponsored by SpaceClaim
Free Guide to High Performance Switching
Sponsored by Keithley
6 Ways Software Rendering Boosts Embedded System Graphics
Sponsored by ENSCO Avionics
An Introduction to LED Capabilities
Sponsored by Photo Research
Telematics: An Industry Game-Changer
Sponsored by SAP

White Papers Sponsored By: