RF & Microwave Electronics

Chalcogenide Nanoionic-Based Radio Frequency Switch

The electrochemical switch is non-volatile, lacks moving parts that can fail, and is easy to fabricate.NASA’s Glenn Research Center has developed nanoionic-based radio frequency (RF) switches for use in devices that rely on low-power RF transmissions, such as automotive systems, RFID technology, and smartphones. These groundbreaking nanoionic switches operate at speeds of semiconductor switches, and are more reliable than microelectromechanical systems (MEMS) switches while retaining the superior RF performance and low power consumption found in MEMS, all without the need for higher electrical voltages. In this new process, metals are photo-dissolved into a chalcogenide glass and packaged with electrodes and a substrate to form a switch. Since the nanoionic-based switch is electrochemical in nature, it has certain advantages over switches that are mechanically based, including nonvolatility, lack of moving parts that can fail, ease and efficiency of activation, and ease of fabrication. This innovative device has the potential to replace MEMS and semiconductors in a wide range of switching systems, including rectifying antennas (rectennas) and other RF antenna arrays.

Posted in: Briefs, Electronic Components, Electronics & Computers, RF & Microwave Electronics, Radio equipment, Switches, Radio-frequency identification, Nanotechnology

Read More >>

Frequency Synthesizer

The THOR-16000-XA multi-output frequency synthesizer from EM Research, Reno, NV, features a single 800-MHz and dual 16-GHz RF outputs. The unit locks to an external 50-MHz reference and exhibits low phase noise at both RF output frequencies. At 100-KHz offset, phase noise is ≤118 dBc/Hz @ 800 MHz and ≤94 dBc/Hz @ 16 GHz. All three outputs have output power of +10 dBm, harmonics ≤30 dBc, spurs ≤70 dBc, and draw 570 mA current while supplied to +5V.

Posted in: Products, RF & Microwave Electronics

Read More >>

Antenna Basics

The antenna is the most intrinsic component of all RF systems, yet the principles of antenna design and wave propagation are rarely discussed outside the entry level engineering classes. Rohde & Schwarz has developed an educational white paper on Antenna Basics to reteach the basic principles in a simplified manner.

Posted in: White Papers, White Papers, Aeronautics, Defense, Electronics & Computers, RF & Microwave Electronics

Read More >>

Keysight Technologies Engineering Education and Research Resources DVD 2016

Keysight is enabling the next generation of engineers to tackle and solve the toughest electronic design and test challenges. With 200 new items in areas relating to education and research (Software Design & Simulation Solutions; Communications Technology; Test & Measurement Science; Nanotechnology & Material Measurement; Power, Energy & Automotive; and Classroom Applications), it includes application notes, white papers, case studies, videos, webcasts, and details on various Keysight solutions. Order your DVD today!    

Posted in: White Papers, Electronics & Computers, RF & Microwave Electronics, Test & Measurement

Read More >>

New Algorithm Reveals Underground Water Levels

Researchers from Stanford University have used satellite data and a new computer algorithm to gauge groundwater levels in Colorado’s San Luis Valley agricultural basin. The technique "fills in" underground water levels in areas where quality data had been previously unavailable.

Posted in: News, Imaging, Visualization Software, Antennas, RF & Microwave Electronics

Read More >>

High-Data-Rate Platform to Capture and Analyze Raw Baseband Clock/Data

NASA’s Jet Propulsion Laboratory, Pasadena, California The Space Communications and Navigation (SCaN) Testbed has a need to capture and analyze high-datarate (<2 Mbps required) baseband information sent over RF by the JPL Software-Defined Radio (SDR). An RF4425 front end, coupled with a MicroGate Synclink USB and custom C++ software back end, is being used to answer this need.

Posted in: Briefs, RF & Microwave Electronics, Computer software and hardware, Satellite communications, Data acquisition, Data acquisition (obsolete)

Read More >>

V-FASTR Radio Transient Classifier

NASA’s Jet Propulsion Laboratory, Pasadena, California The V-FASTR (VLBA Fast Transient Experiment) system was motivated by the desire to monitor the radio sky for interesting transient events. To be confident that no interesting extragalactic event is missed, every VFASTR candidate requires human review and evaluation. Candidates consist of pulsar pulses, spurious correlated radio frequency interference (RFI), and other potentially unknown phenomena. However, the number of candidates generated by V-FASTR each day ranges from zero, to tens, to hundreds, to thousands, depending on the observational target and environmental conditions. On busy days, the volume of candidates exceeds the amount of time available for human review.

Posted in: Briefs, RF & Microwave Electronics, Statistical analysis, Data acquisition and handling, Radio equipment

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.