Semiconductors & ICs

Imaging Spectrometer on a Chip

One integrated circuit would perform the functions of a conventional several-kilogram spectrometer. A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure).

Posted in: Semiconductors & ICs, Briefs, TSP

Read More >>

Four-Quadrant Analog Multipliers Using G4-FETs

Devices with independently biased multiple inputs are exploited to simplify multiplier circuits. Theoretical analysis and some experiments have shown that the silicon-on-insulator (SOI) 4-gate transistors known as G4-FETs can be used as building blocks of four-quadrant analog voltage multiplier circuits. Whereas a typical prior analog voltage multiplier contains between six and 10 transistors, it is possible to construct a superior voltage multiplier using only four G4-FETs.

Posted in: Semiconductors & ICs, Briefs, TSP

Read More >>

SiC Multi-Chip Power Modules as Power-System Building Blocks

Fault-tolerant power-supply systems could be constructed and expanded relatively inexpensively. The term “SiC MCPMs” (wherein “MCPM” signifies “multi-chip power module”) denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. Invented in the 1940s and named after its inventor (R. V. Pound), the original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. Heretofore, Pound circuits used in conjunction with cryogenic resonators have included room-temperature electronic components coupled to the resonators via such inter-connections as coaxial cables. The thermo mechanical instabilities of these inter-connections give rise to frequency instabilities. In a cryogenic Pound circuit of the present improved type, all of the active electronic components, the inter-connections among them, and the inter-connections between them and the resonator reside in the cryogenic environment along with the resonator and, hence, are thermo-mechanically stabilized to a large degree. Hence, further, frequency instabilities are correspondingly reduced.

Posted in: Semiconductors & ICs, Briefs, TSP

Read More >>

Microstrip Antenna Arrays on Multilayer LCP Substrates

Antennas, feedlines, and switches are embedded in and on flexible sheets. A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below.

Posted in: Semiconductors & ICs, Briefs, TSP

Read More >>

Multichannel X-Band Dielectric-Resonator Oscillator

Unlike other DROs, this one is electrically tunable. A multichannel dielectric-resonator oscillator (DRO), built as a prototype of a local oscillator for an X-band transmitter or receiver, is capable of being electrically tuned among and within 26 adjacent frequency channels, each 1.16 MHz wide, in a band ranging from ≈7,040 to ≈7,070 GHz. The tunability of this oscillator is what sets it apart from other DROs, making it possible to use mass-produced oscillator units of identical design in diverse X-band applications in which there are requirements to use different fixed frequencies or to switch among frequency channels.

Posted in: Semiconductors & ICs, Briefs, TSP

Read More >>

Semiconductor Bolometers Give Background-Limited Performance

These devices can be fabricated inexpensively by use of established silicon-processing techniques. Semiconductor bolometers that are capable of detecting electromagnetic radiation over most or all of the infrared spectrum and that give background-limited performance at operating temperatures from 20 to 300 K have been invented. The term “background-limited performance” as applied to a bolometer, thermopile, or other infrared detector signifies that the ability to detect infrared signals that originate outside the detector is limited primarily by thermal noise attributable to the background radiation generated external to the bolometer. The signal- to-noise ratios and detectivities of the bolometers and thermopiles available prior to this invention have been lower than those needed for background-limited performance by factors of about 100 and 10, respectively.

Posted in: Semiconductors & ICs, Briefs

Read More >>