Semiconductors & ICs

Method for Formal Verification of Polymorphic Heterogeneous Multicore Processors

John H. Glenn Research Center, Cleveland, Ohio Amethod was developed to model polymorphic heterogeneous multicore processors at a high level of abstraction, and formally verify them. The Bahurupi polymorphic heterogeneous multi-core architecture allows the combination of multiple simple processor cores — which can be superscalar — in order to form a coalition that behaves like a wider superscalar processor. This is done at runtime under software directives, allowing the architecture to adapt to the needs of executed applications with high instruction level parallelism. Such coalitions of cores were found to have comparable or better performance than that of a wide superscalar processor with issue width equal to the sum of the issue widths of the simple cores in the coalition, while avoiding the complexity, reliability issues, and high power consumption of wide superscalar cores. All of these are highly desirable advantages of future microprocessors that will be optimized for aerospace applications.

Posted in: Briefs, TSP

Read More >>

SEE Mitigation Technique for Self-Timed Circuits and Rad-Hard, Self-Timed Configurable Memory

The new block RAM is faster and consumes less power than conventional block RAMs, while providing unparalleled levels of radiation resilience. Marshall Space Flight Center, Alabama To enable NASA’s next-generation missions, there is a critical need for a reconfigurable field programmable gate array (FPGA) that can withstand the wide temperature ranges and radiation of the space environment while consuming minimal power without compromising on performance. To address this need, GoofyFoot Labs developed the E2-AMP FPGA, a radiation-hardened, high-performance, low-power FPGA capable of operating reliably over wide temperature ranges and rapid thermal changes.

Posted in: Briefs

Read More >>

Modeling for Partitioned and Multicore Flight Software Systems

NASA’s Jet Propulsion Laboratory, Pasadena, California The current flight software approach is monolithic in nature. Every module has tentacles that reach deep within dozens of other software modules. Because of these interdependencies between modules, functionality is difficult to extract and reuse for other missions.

Posted in: Briefs, TSP

Read More >>

Technique Generates Electricity from Mechanical Vibrations

Research scientists at VTT Technical Research Centre of Finland have demonstrated a new technique for generating electrical energy. The method can be used in harvesting energy from mechanical vibrations of the environment and converting it into electricity. Energy harvesters are needed in wireless self-powered sensors and medical implants, where they could ultimately replace batteries. The technology could be introduced on an industrial scale within three to six years.

Posted in: News, Power Management, Energy Harvesting

Read More >>

New System Could Prolong Power in Mobile Devices

Researchers from The University of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn’t die after a few hours of heavy use. The technology taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.

Posted in: News, Electronic Components, PCs/Portable Computers, Power Management

Read More >>

Researchers Develop Thinnest Electric Generator

Researchers from Columbia Engineering and the Georgia Institute of Technology made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.“This material—just a single layer of atoms—could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable sensors or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket,” says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.Hone’s team placed thin flakes of MoS2 on flexible plastic substrates and determined how their crystal lattices were oriented using optical techniques. They then patterned metal electrodes onto the flakes. In research done at Georgia Tech, a group led by Zhong Lin Wang, Regents’ Professor in Georgia Tech’s School of Materials Science and Engineering, installed measurement electrodes on the samples provided by Hone’s group, then measured current flows as the samples were mechanically deformed. They monitored the conversion of mechanical to electrical energy, and observed voltage and current outputs.Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.Source Also: Learn more about a Piezoelectric Energy Harvesting Transducer System.

Posted in: News, Electronic Components, Electronics, Power Management, Metals, Sensors

Read More >>

3D-Printed Power Inverter Enables Lighter Electric Vehicles

Using 3D printing and novel semiconductors, researchers at the Department of Energy’s Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful, and more efficient.At the core of this development is wide bandgap material made of silicon carbide, with qualities superior to standard semiconductor materials. Power inverters convert direct current into the alternating current that powers the vehicle. The Oak Ridge inverter achieves much higher power density with a significant reduction in weight and volume.Using additive manufacturing, researchers optimized the inverter’s heat sink, allowing for better heat transfer throughout the unit. This construction technique allowed them to place lower-temperature components close to the high-temperature devices, further reducing the electrical losses and reducing the volume and mass of the package.The research group’s first prototype, a liquid-cooled all-silicon carbide traction drive inverter, features 50-percent-printed parts. Initial evaluations confirmed an efficiency of nearly 99 percent, surpassing DOE’s power electronics target and setting the stage for building an inverter using entirely additive manufacturing techniques.Building on the success of this prototype, researchers are working on an inverter with an even greater percentage of 3D-printed parts in commercially available vehicles. SourceAlso: See other Electronics tech briefs.

Posted in: News, Rapid Prototyping & Tooling, Automotive

Read More >>

White Papers

OEM Optical System Development
Sponsored by Ocean Optics
Key Procedures and Aqueous Cleaning Agents for Metal and Electronic Component Cleaning
Sponsored by Alconox
Gearing Up for Parametric Test’s High Voltage Future
Sponsored by Keithley Instruments
Epoxies and Glass Transition Temperature
Sponsored by Master Bond
Tubing & Hose Buying Tips, Part 2
Sponsored by Newage Industries
Electroforming Basics
Sponsored by Servometer

White Papers Sponsored By: