Semiconductors & ICs

Novel Computer Chips Could Bridge Gap Between Computation and Storage

Software written by Jing Li, right, and her students — including Jialiang Zhang, left —allows programmers to directly use existing coding languages with the new Liquid Silicon chips. (Credit: Stephanie Precourt/UW–Madison College of Engineering)

Computer chips in development at the University of Wisconsin–Madison could make future computers more efficient and powerful by combining tasks usually kept separate by design. Jing Li, an assistant professor of electrical and computer engineering at UW–Madison, is creating computer chips that can be configured to perform complex calculations and store massive amounts of information within the same integrated unit — and communicate efficiently with other chips. She calls them “liquid silicon.”

Posted in: News, Computers, Electronic Components, Electronics, Semiconductors & ICs
Read More >>

Self-Powered Intelligent Keyboard Could Provide Additional Security

By analyzing such parameters as the force applied by key presses and the time interval between them, a new self-powered, non-mechanical, intelligent keyboard could provide a stronger layer of security for computer users. The self-powered device generates electricity when a user’s fingertips contact the multi-layer plastic materials that make up the device.

Posted in: Articles, News, Board-Level Electronics, Computers, Electronic Components, Electronics, Electronics & Computers, Power Management, Energy, Energy Harvesting, Semiconductors & ICs
Read More >>

Zinc Oxide Materials Power Tiny Energy Harvesting Devices

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable, and powered by ambient renewable energy. This last goal inspired researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be used to tap into abundant mechanical energy sources to power micro devices.

They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The group’s findings are expected to provide an effective approach for realizing “nanogenerators” for self-powered electronic systems such as portable communication devices, healthcare monitoring devices, environmental monitoring devices, and implantable medical devices.

Source:

Posted in: News, Electronic Components, Electronics & Computers, Energy, Energy Harvesting, Renewable Energy, Materials, Metals, Nanotechnology, Semiconductors & ICs
Read More >>

Glass as Electrode Makes Batteries More Efficient

Today’s batteries provide a reliable power supply for our smartphones, electric cars and laptops, but are unable to keep up with the growing demands placed on them. Researchers have discovered a material that may have the potential to double battery capacity: vanadate-borate glass. The glass is being used as a cathode material, which is made of vanadium oxide (V2O5) and lithium-borate (LiBO2) precursors, and was coated with reduced graphite oxide (RGO) to enhance the electrode properties of the material.

The vanadate-borate glass powder was used for battery cathodes, which were placed in prototypes for coin cell batteries to undergo numerous charge/discharge cycles. In tests, the glass electrodes demonstrated a vast improvement in these batteries’ capacity and energy density.

Source:

Posted in: News, Batteries, Electronic Components, Electronics & Computers, Energy, Energy Efficiency, Materials, Semiconductors & ICs
Read More >>

Wearable Nanowire Sensors Monitor Electrophysiological Signals

Researchers from North Carolina State University have developed a new, wearable sensor that uses silver nanowires to monitor electrophysiological signals, such as electrocardiography (EKG) or electromyography (EMG). The new sensor is as accurate as the “wet electrode” sensors used in hospitals, but can be used for long-term monitoring and when a patient is moving.

Posted in: News, News, Electronic Components, Electronics & Computers, Medical, Patient Monitoring, Nanotechnology, Semiconductors & ICs, Sensors
Read More >>

Technology Diagnoses Brain Damage from Concussions, Strokes, and Dementia

New optical diagnostic technology developed at Tufts University School of Engineering promises new ways to identify and monitor brain damage resulting from traumatic injury, stroke, or vascular dementia in real time and without invasive procedures.

Posted in: News, Electronic Components, Electronics & Computers, Diagnostics, Medical, Fiber Optics, Optics, Photonics, Semiconductors & ICs, Measuring Instruments, Test & Measurement
Read More >>

Researchers Develop a Way to Control Material with Voltage

A new way of switching the magnetic properties of a material using just a small applied voltage, developed by researchers at MIT and collaborators elsewhere, could signal the beginning of a new family of materials with a variety of switchable properties. The technique could ultimately be used to control properties other than magnetism, including reflectivity or thermal conductivity. The first application of the new finding is likely to be a new kind of memory chip that requires no power to maintain data once it’s written, drastically lowering its overall power needs. This could be especially useful for mobile devices, where battery life is often a major limitation.

Posted in: News, Batteries, Board-Level Electronics, Electronic Components, Electronics & Computers, Power Management, Materials, Metals, Semiconductors & ICs
Read More >>

Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Electronics & Computers, Power Management, Energy, Energy Efficiency, Ceramics, Materials, Semiconductors & ICs
Read More >>

Technique Generates Electricity from Mechanical Vibrations

Research scientists at VTT Technical Research Centre of Finland have demonstrated a new technique for generating electrical energy. The method can be used in harvesting energy from mechanical vibrations of the environment and converting it into electricity. Energy harvesters are needed in wireless self-powered sensors and medical implants, where they could ultimately replace batteries. The technology could be introduced on an industrial scale within three to six years.

Posted in: News, Electronics & Computers, Power Management, Energy, Energy Harvesting, Semiconductors & ICs
Read More >>

New System Could Prolong Power in Mobile Devices

Researchers from The University of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn’t die after a few hours of heavy use. The technology taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.

Posted in: News, Electronic Components, Electronics & Computers, PCs/Portable Computers, Power Management, Semiconductors & ICs
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.