Semiconductors & ICs

On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz

Compact, low-power, electronically tunable submillimeter-wave local oscillators are now feasible. The world’s first silicon- based complementary metal oxide/semi- conductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power- consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter-wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog-to-digital converters, and advanced microprocessors.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

Semiconductor junctions are relocated away from Si/SiO2 interfaces. Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated- circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal- handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

Posted in: Briefs, Semiconductors & ICs

Read More >>

Low-Temperature Supercapacitors

Electrolyte compositions are designed to extend the low-temperature operational limit. An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of –40 °C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

MEMS/ECD Method for Making Bi2–xSbxTe3 Thermoelectric Devices

Devices containing diverse materials in complex three-dimensional shapes can be fabricated. A method of fabricating Bi2–xSbxTe3-based thermoelectric microdevices involves a combination of (1) techniques used previously in the fabrication of integrated circuits and of microelectromechanical systems (MEMS) and (2) a relatively inexpensive MEMS-oriented electrochemical- deposition (ECD) technique. The devices and the method of fabrication at an earlier stage of development were reported in “Sub milli meter-Sized Bi2–xSbxTe3 Thermoelectric Devices” (NPO-20472), NASA Tech Briefs, Vol. 24, No. 5 (May 2000), page 44. To recapitulate: A device of this type generally contains multiple pairs of n- and p-type Bi2–xSbxTe3 legs connected in series electrically and in parallel thermally. The Bi2–xSbxTe3 legs have typical dimensions of the order of tens of microns. Metal contact pads and other non-thermoelectric parts of the devices are fabricated by conventional integrated-circuit and MEMS fabrication techniques. The Bi2–xSbxTe3 thermoelectric legs are formed by electrodeposition, through holes in photoresist masks, onto the contact pads.

Posted in: Briefs, Semiconductors & ICs

Read More >>

Compact, Single-Stage MMIC InP HEMT Amplifier

This amplifier exhibits gain of 5 dB at 340 GHz. Figure 1 depicts a monolithic microwave integrated-circuit (MMIC) single-stage amplifier containing an InP-based high- electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz. This is one in a series of devices that are intermediate products of a continuing effort to develop advanced MMIC amplifiers for sub-millimeter-wavelength imaging systems, scientific instrumentation, heterodyne receivers, and other applications.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

Radiation-Insensitive Inverse Majority Gates

These gates would be implemented as microscopic vacuum electronic devices. To help satisfy a need for high-density logic circuits insensitive to radiation, it has been proposed to realize inverse majority gates as microscopic vacuum electronic devices. In comparison with solid-state electronic devices ordinarily used in logic circuits, vacuum electronic devices are inherently much less adversely affected by radiation and extreme temperatures.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

Dual-Input AND Gate From Single-Channel Thin-Film FET

These transistors show potential as large-area, low-cost electronic circuitry on rigid and flexible substrates. A regio-regular poly (3-hexylthiophene) (RRP3HT) thin-film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. RRP3HT is a semiconducting polymer that has a carrier mobility and on/off ratio when used in a field effect transistor (FET) configuration. This commercially available polymer is very soluble in common organic solvents and is easily processed to form uniform thin films. The most important polymer-based device fabricated and studied is the FET, since it forms the building block in logic circuits and switches for active matrix (light-emitting-diode) (LED) displays, smart cards, and radio frequency identification (RFID) cards.

Posted in: Briefs, TSP, Semiconductors & ICs

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.