Semiconductors & ICs

Three MMIC Amplifiers for the 120-to-200 GHz Frequency Band

These would complement previously reported MMIC amplifiers designed for overlapping frequency bands. Closely following the development reported in the article, "Low-Noise MMIC Amplifiers for 120 to 180 GHz" (NPO-42783), three new monolithic microwave integrated circuit (MMIC) amplifiers that would operate in the 120-to-200- GHz frequency band have been designed and are under construction at this writing. The active devices in these amplifiers are InP high-electron-mobility transistors (HEMTs). These amplifiers (see figure) are denoted the LSLNA150, the LSA200, and the LSA185, respectively.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Low-Noise MMIC Amplifiers for 120 to 180 GHz

Potential applications include radar, communications, radiometry, and millimeter-wave imaging. Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter-wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50-μm-thick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Digital Synchronizer Without Metastability

A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Board Saver for Use With Developmental FPGAs

A printed-circuit board is protected against repeated soldering and unsoldering. A device denoted a board saver has been developed as a means of reducing wear and tear of a printed-circuit board onto which an antifuse field-programmable gate array (FPGA) is to be eventually soldered permanently after a number of design iterations. The need for the board saver or a similar device arises because (1) antifuse- FPGA design iterations are common and (2) repeated soldering and unsoldering of FPGAs on the printed-circuit board to accommodate design iterations can wear out the printed-circuit board. The board saver is basically a solderable/unsolderable FPGA receptacle that is installed temporarily on the printed-circuit board.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Circuit for Driving Piezoelectric Transducers

Circuits similar to this one could be useful in ultrasonic cleaners. The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized.

Posted in: Semiconductors & ICs, Briefs

Read More >>

Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

There has been some additional development of parts reported in “Multi-Modulator for Bandwidth-Efficient Communication” (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on

Posted in: Semiconductors & ICs, Briefs

Read More >>

Low-Noise Amplifier for 100 to 180 GHz

Noise temperature is lower than in the prior state of the art. A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers.

Posted in: Semiconductors & ICs, Briefs

Read More >>

White Papers

Connectors Outperform Fardwiring for Manufacturers and Their Customers
Sponsored by Harting
Using Linux in Medical Devices: What Developers and Manufacturers Need to Know
Sponsored by Wind River
Improving Absorption Measurements through Light Source Selection
Sponsored by Ocean Optics
Tubing & Hose Buying Tips, Part 2
Sponsored by Newage Industries
When Wire Feedthroughs Make Sense
Sponsored by Douglas Electrical Components
How To Guide for the Most Common Measurements
Sponsored by National Instruments

White Papers Sponsored By: