Students Design Robotic Gardeners for Deep Space

Graduate students from the University of Colorado Boulder are designing robots to work in a deep-space habitat, tending gardens and growing food for astronaut explorers.The team's entry in the eXploration HABitat (X-Hab) Academic Innovation Challenge is called "Plants Anywhere: Plants Growing in Free Habitat Spaces." Instead of an area set aside just for vegetation, the approach calls for plants to be distributed in any available space in a deep-space habitat.In their new system, a Remotely Operated Gardening Rover, or ROGR, travels around the habitat tending to a fleet of SmartPots, or SPOTS, which would be distributed throughout the deep-space habitat's living space.The SPOTS facilitate plants growing in a small, custom- designed hydroponic growth chamber with computerized systems to monitor the vegetation's progress. Each has its own sensor run by an embedded computer."We envision dozens of SPOTS on a space habitat," said Dane Larsen who is working on a master's degree on computer science. "Telemetry in each SPOT provides data on plant condition to a computer display."The robots and plants are networked together, and the SPOTS have the ability to monitor their fruits' or vegetables' soil humidity and issue watering requests.As each SPOT monitors and supports its plants, it can determine when ROGR needs to perform plant maintenance tasks. ROGR, a robot on wheels, has a forklift to move SPOTS, a mechanical arm for manipulating the plants, and a fluid delivery system that can provide fresh water or water with nutrients.SourceAlso: Learn about a Dexterous Humanoid Robot.

Posted in: Electronics & Computers, Sensors, Test & Measurement, Monitoring, Machinery & Automation, Robotics, News


'Sensing Skin' Detects Damage in Concrete Structures

Researchers from North Carolina State University and the University of Eastern Finland have developed new “sensing skin” technology designed to serve as an early warning system for concrete structures, allowing authorities to respond quickly to damage in everything from nuclear facilities to bridges.“The sensing skin could be used for a wide range of structures, but the impetus for the work was to help ensure the integrity of critical infrastructure such as nuclear waste storage facilities,” says Dr. Mohammad Pour-Ghaz, an assistant professor of civil, construction and environmental engineering at NC State and co-author of a paper describing the work.The skin is an electrically conductive coat of paint that can be applied to new or existing structures. The paint can incorporate any number of conductive materials, such as copper, making it relatively inexpensive.Electrodes are applied around the perimeter of a structure. The sensing skin is then painted onto the structure, over the electrodes. A computer program then runs a small current between two of the electrodes at a time, cycling through a number of possible electrode combinations.Every time the current runs between two electrodes, a computer monitors and records the electrical potential at all of the electrodes on the structure. This data is then used to calculate the sensing skin’s spatially distributed electrical conductivity. If the skin’s conductivity decreases, that means the structure has cracked or been otherwise damaged.The researchers have developed a suite of algorithms that allow them to both register damage and to determine where the damage has taken place.SourceAlso: Learn about Designing Composite Repairs and Retrofits for Infrastructure.

Posted in: Electronics & Computers, Electronic Components, Electronics, Materials, Sensors, Detectors, Test & Measurement, Communications, Semiconductors & ICs, News


Mobile Robots Help Technicians Manufacture Airplanes

A new mobile assistant is being developed to support technicians in the airplane manufacturing industry when applying sealant, measuring, and testing — without putting them at risk. In the EU project known as VALERI (Validation of Advanced, Collaborative Robotics for Industrial Applications), a European consortium is engineering a mobile robot that operates autonomously and moves independently through a production hall, side-by-side with the engineers and technicians. It is not intended to replace the technician, but instead relieve them of stressful and monotonous duties and take over inspection duties.

Posted in: Manufacturing & Prototyping, Industrial Controls & Automation, Sensors, Test & Measurement, Aerospace, Aviation, Machinery & Automation, Robotics, News


New Strain Gauge Enables 'Soft Machines'

Purdue University researchers have developed a technique to embed a liquid-alloy pattern inside a rubber-like polymer to form a network of sensors. The approach may be used to produce "soft machines" made of elastic materials and liquid metals.Such an elastic technology could be used to create robots with sensory skin, as well as develop stretchable garments that interact with computers."What's exciting about the soft strain gauge is that it can detect very high strains and can deform with almost any material," said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University. "The skin around your joints undergoes about 50 percent strain when you bend a limb, so if you wanted to have sensory skin and wearable technology that tracks your movement you need to employ soft, stretchable materials that won't restrict your natural range of motion."SourceAlso: Learn about Thermal Properties of Microstrain Gauges.

Posted in: Materials, Metals, Plastics, Motion Control, Sensors, Machinery & Automation, Robotics, News


New Algorithms Enable Self-Assembling, Printable Robots

In two new papers, MIT researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding.The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical “muscles” that enable robots’ movements.“We have this big dream of the hardware compiler, where you can specify, ‘I want a robot that will play with my cat,’ or ‘I want a robot that will clean the floor,’ and from this high-level specification, you actually generate a working device,” said Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.SourceAlso: Learn about Self-Assembling, Flexible, Pre-Ceramic Composite Preforms.

Posted in: Electronics & Computers, Electronic Components, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Motors & Drives, Power Transmission, Sensors, Software, Computer-Aided Design (CAD), Mathematical/Scientific Software, Machinery & Automation, Robotics, News


Motion-Sensing Keyboard Lets Users Hover and Swipe

Microsoft engineers have developed a new type of augmented mechanical keyboard, sensing rich and expressive motion gestures performed both on and directly above the device. A low-resolution matrix of infrared (IR) proximity sensors is interspersed with the keys of a regular mechanical keyboard. This results in coarse, but high frame-rate motion data.

Posted in: Electronics & Computers, PCs/Portable Computers, Mechanical Components, Sensors, Software, Mathematical/Scientific Software, News


New Rotary Sensor Keeps Conveyor Belts Running Smoothly

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. In factories, goods and products are transported from one processing station to the next via conveyor belt. For the transfer from one belt to the next to run smoothly, it must take place precisely at a specific position, which means knowing the relative position of objects on the conveyor belts as they move towards each other. This can be determined from the angle of rotation, which refers to the position of a moveable body to an axis.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Industrial Controls & Automation, Consumer Product Manufacturing, Sensors, Test & Measurement, Measuring Instruments, News