Sensors/Data Acquisition

Researcher Spotlight: Atom­Thick Material Offers 2D Imaging Possibilities

Rice University scientists have developed a two-­dimensional, atom­-thick, light-­sensitive material called CIS, a single­-layer matrix of copper, indium, and selenium atoms. Sidong Lei, a graduate student, also built a prototype — a three-­pixel charge­-coupled device (CCD) sensor — to prove the material’s ability to capture an image. The optoelectronic memory material may be the basis for future flat imaging devices and two­-dimensional electronics.

Posted in: Articles, Sensors

Read More >>

3D Vision System Aids 560-Mile Piloted Drive

Audi completed a long-distance test drive of its Audi A7 Sportback semi-autonomous concept vehicle, finishing the journey at the International CES 2015 consumer electronics show in Las Vegas. The “piloted driving” — Audi’s take on combining autonomous driving with individual control — began in Stanford, California and ended two days and 560 miles later on January 6, 2015.

Posted in: Application Briefs, Cameras, Video, Machinery & Automation, Sensors

Read More >>

CMOS Camera

Thunderbolt™ technology cameras from Ximea (Münster, Germany) feature sensors from Sony (IMX174) and CMOSIS (CMV20000). The cameras provide direct access to computer memory at 10 and 20 Gbit/s respectively.

Posted in: Products, Cameras, Sensors

Read More >>

Vision Sensors

Baumer (Southington, CT) has expanded its VeriSens XC series vision sensor portfolio to include models capable of color identification and inspection. Color FEX, a new, intelligent feature for setup of 3D color identification and definition, automatically identifies and visualizes object colors in 3D as color spheres. The resulting absence of sphere collisions ensures reliable color inspection.

Posted in: Products, Cameras, Visualization Software, Sensors

Read More >>

Designing Smart Medical Devices with Force Sensing Technology

This session will explore the exciting new trend toward designing smart medical devices that provide critical force feedback to eliminate guesswork, improve outcomes, and increase consistency.

Posted in: Tech Talks, Tech Talks, Sensors

Read More >>

ORCA Prototype Ready to Observe Ocean

If selected for a NASA flight mission, the Ocean Radiometer for Carbon Assessment (ORCA) instrument will study microscopic phytoplankton, the tiny green plants that float in the upper layer of the ocean and make up the base of the marine food chain.Conceived in 2001 as the next technological step forward in observing ocean color, the ORCA-development team used funding from Goddard’s Internal Research and Development program and NASA’s Instrument Incubator Program (IIP) to develop a prototype. Completed in 2014, ORCA now is a contender as the primary instrument on an upcoming Earth science mission.The ORCA prototype has a scanning telescope designed to sweep across 2,000 kilometers (1,243 miles) of ocean at a time. The technology collects light reflected from the sea surface that then passes through a series of mirrors, optical filters, gratings, and lenses. The components direct the light onto an array of detectors that cover the full range of wavelengths.Instead of observing a handful of discrete bands at specific wavelengths reflected off the ocean, ORCA measures a range of bands, from 350 nanometers to 900 nanometers at five-nanometer resolution. The sensor will see the entire rainbow, including the color gradations of green that fade into blue. In addition to the hyperspectral bands, the instrument has three short-wave infrared bands that measure specific wavelengths between 1200 and 2200 nanometers for atmospheric applications.The NASA researchers will use ORCA to obtain more accurate measurements of chlorophyll concentrations, the size of a phytoplankton bloom, and how much carbon it holds. Detecting chlorophyll in various wavelengths also will allow the team to distinguish between types of phytoplankton. Suspended sediments in coastal regions could also be detected by the instrument.SourceAlso: Learn about a Ultra-Low-Maintenance Portable Ocean Power Station.

Posted in: News, Optics, Photonics, Sensors, Measuring Instruments

Read More >>

Fabrication of a Nanopipette Array for Biosensing

Ames Research Center, Moffett Field, California Development of biosensors is an active field due to a wide range of applications in lab-on-a-chip, diagnostics of infectious diseases, cancer diagnostics, environment monitoring, biodetection, and others. One of the strategies used for selective identification of a target is to preselect a probe that has a unique affinity for the target, or can uniquely interact or hybridize with the target — a lock and key approach. In this approach, one then needs a platform to support the probe and a recognizing element that can recognize the said interaction between the probe and the target. Electrical readout biosensors have gained much attention because, in principle, they can be made more compact than optical technologies.

Posted in: Briefs, Sensors

Read More >>