Sensors/Data Acquisition

Low-Power Charged Particle Counter for Space Radiation Monitoring

John H. Glenn Research Center, Cleveland, Ohio A miniature, low-power, solid-state detector for ionizing radiation was developed for use in more locations, and requiring less space and lower power than current technology. An accepted way of counting high-energy charged particles common in space radiation is to detect the light produced when the particles strike a scintillator material.

Posted in: Articles, Briefs, TSP, Sensors

Read More >>

Ground-to-Space Laser Calibration System

This is a space-focused application located on the ground, which makes it easily accessible for maintenance and development. Langley Research Center, Hampton, Virginia The accuracy of spaceborne sensors measuring reflected solar radiance can be affected by multiple factors. First, instruments with complex optics are sensitive to polarization. The response of such instruments is characterized before launch; however, sensitivity to polarization can change on orbit significantly. None of the existing on-orbit sensors has the ability to monitor its sensitivity to polarization on orbit. Another factor is the degradation of optics, particularly in blue wavelength range below 500 nm. Currently, there is no reliable method to access spectral changes in the optics of instruments on orbit. The third factor contributing to changes in on-orbit calibration is the instrument response to stray light. The prior method of correcting radiometric measurement for polarization effects was based on vicarious calibration to the SeaWIFS instrument, which was designed not to be sensitive to polarization.

Posted in: Articles, Briefs, TSP, Sensors

Read More >>

Process-Hardened, Multi-Analyte Sensor for Characterizing Multiple Rocket Plume Constituents in a Test Environment

A multi-analyte measurement capability is integrated into a single sensor. Stennis Space Center, Mississippi Stennis Space Center (SSC) is one of three government-operated rocket engine test facilities in the United States and is the primary center for testing and flight-certifying rocket propulsion systems for future space vehicles. Safety is a top priority at NASA-SSC. To safely test and certify rocket engines, monitoring technologies for rocket test stands, which (1) verify compliance with federal, state, and local government guidelines; (2) ensure a safe work environment for its personnel at ground testing facilities; as well as (3) monitor environmental impacts, are all required. Additionally, NASA has a need to monitor engine combustion efficiencies and engine health of a variety of launch vehicle configurations utilizing liquid oxygen, liquid hydrogen, isopropanol, and kerosene. Multi-analyte measurement technology is essential for a safe and effective working environment. Therefore, for the advancement in multi-analyte technology in the rocket testing industry, a device was created that integrates multi-analyte measurements into a single sensor unit.

Posted in: Articles, Briefs, Sensors, Monitoring

Read More >>

Wireless Electrical Devices Using Floating Electrodes

Langley Research Center, Hampton, Virginia A wireless, connection-free, open circuit technology can be used for developing electrical devices like sensors that need no physical contact with the properties being measured. At the core of the technology is the SansEC (Sans Electrical Connections) circuit that is damage-resilient and environmentally friendly to manufacture and use.

Posted in: Articles, Briefs, TSP, Sensors

Read More >>

Web-Enabled and Automatic Ground Processing Infrastructure Servicing the UAVSAR Airborne Missions

NASA’s Jet Propulsion Laboratory, Pasadena, California The UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) ground data processing infrastructure facilitates a wide range of mission operational processes through a centralized database, Web-enabled interfaces, and background automation. By tracking flight request submissions and flight planning activities, the database provides the most up-to-date historical records on how and when flight missions took place, as well as what radar data were collected. As data-collection missions wrap up, post-mission reports are uploaded to the database via a Web interface, while raw data are scanned into the database enabling the operator to perform polarimetric/interferometric processing on the radar data.

Posted in: Articles, Briefs, Aviation, Data Acquisition

Read More >>

High-Resolution Data Acquisition System Enables Reliable Engine Parameter Measurements

Obtaining accurate measurements is critical for improving vehicle component performance and overall system reliability. HBM, Inc., Marlborough, Massachusetts Data acquisition plays a critical role in improving vehicle component performance and overall system reliability. Measuring engine parameters, including engine cranking speed and the mechanical condition of the engine, requires high-resolution data acquisition equipment.

Posted in: Articles, Briefs, Data Acquisition, Measuring Instruments

Read More >>

Guarded Flat Plate Insulation Test Cryostat

Features include high testing rate and high data quality. John F. Kennedy Space Center, Florida The guarded flat plate insulation test cryostat (Cryostat-500) is a boil-off calorimeter comprising a flat-bottom test apparatus for measuring the absolute thermal performance of an insulation test article. Typical dimensions allow accepting test specimens 200 mm in diameter by up to 30 mm thick. The test chamber is guarded by a second cryogen chamber to prevent parasitic heat loads. System insulation materials provide additional thermal stability for testing over a wide range of environmental conditions. The cold-mass assembly can be configured for rigid or soft materials, with or without compressive loads.

Posted in: Articles, Briefs, Data Acquisition

Read More >>