Sensors/Data Acquisition

Gamma-Ray Spectroscope Supports Asteroid Mining Missions

A new gamma-ray spectroscope detects the veins of gold, platinum, and rare earths hidden within the asteroids, moons, and other airless objects floating around the solar system. The sensor, developed by teams at Vanderbilt and Fisk Universities, NASA’s Jet Propulsion Laboratory, and the Planetary Science Institute, will allow miners to find valuable materials beyond Earth.

Posted in: News, Detectors


Depth-Sensing Camera Works in Bright Light and Darkness

A new imaging technology from Carnegie Mellon University and the University of Toronto operates in both bright sunlight and darkness. A mathematical model programs the device so that the camera and its light source work together efficiently, eliminating extraneous light, or “noise,” that would otherwise wash out the signals needed to detect a scene’s contours.

Posted in: News, Detectors, Sensors


ORCA Prototype Ready to Observe Ocean

If selected for a NASA flight mission, the Ocean Radiometer for Carbon Assessment (ORCA) instrument will study microscopic phytoplankton, the tiny green plants that float in the upper layer of the ocean and make up the base of the marine food chain.Conceived in 2001 as the next technological step forward in observing ocean color, the ORCA-development team used funding from Goddard’s Internal Research and Development program and NASA’s Instrument Incubator Program (IIP) to develop a prototype. Completed in 2014, ORCA now is a contender as the primary instrument on an upcoming Earth science mission.The ORCA prototype has a scanning telescope designed to sweep across 2,000 kilometers (1,243 miles) of ocean at a time. The technology collects light reflected from the sea surface that then passes through a series of mirrors, optical filters, gratings, and lenses. The components direct the light onto an array of detectors that cover the full range of wavelengths.Instead of observing a handful of discrete bands at specific wavelengths reflected off the ocean, ORCA measures a range of bands, from 350 nanometers to 900 nanometers at five-nanometer resolution. The sensor will see the entire rainbow, including the color gradations of green that fade into blue. In addition to the hyperspectral bands, the instrument has three short-wave infrared bands that measure specific wavelengths between 1200 and 2200 nanometers for atmospheric applications.The NASA researchers will use ORCA to obtain more accurate measurements of chlorophyll concentrations, the size of a phytoplankton bloom, and how much carbon it holds. Detecting chlorophyll in various wavelengths also will allow the team to distinguish between types of phytoplankton. Suspended sediments in coastal regions could also be detected by the instrument.SourceAlso: Learn about a Ultra-Low-Maintenance Portable Ocean Power Station.

Posted in: News, Optics, Photonics, Sensors, Measuring Instruments


Wearable Nanowire Sensors Monitor Electrophysiological Signals

Researchers from North Carolina State University have developed a new, wearable sensor that uses silver nanowires to monitor electrophysiological signals, such as electrocardiography (EKG) or electromyography (EMG). The new sensor is as accurate as the “wet electrode” sensors used in hospitals, but can be used for long-term monitoring and when a patient is moving.

Posted in: News, News, Electronic Components, Patient Monitoring, Sensors


Mini Solar Observatory Can Be Used on Manned Spacecraft

Southwest Research Institute (SwRI) developed a miniature portable solar observatory for use onboard a commercial, manned, suborbital spacecraft. The SwRI Solar Instrument Pointing Platform (SSIPP) uses a classic, two-stage pointing system similar to larger spacecraft, but in this case, the first stage is a pilot who initially steers the instrument toward the Sun. SSIPP does the rest, locking onto the Sun to allow observations. The first SSIPP spaceflight will search for “solar ultrasound,” a phenomenon first observed in the early 2000s by the Transitional Region and Coronal Explorer (TRACE) spacecraft. The ultrasound is sound waves with a 10-second period, some 18 octaves deeper than ultrasound on Earth, and forms visible ripples in the Sun’s surface layers. The waves are difficult to detect without space instrumentation because the tiny, rapid fluctuations cannot be separated from the confounding influence of Earth’s turbulent atmosphere. Although at first SSIPP will be operated from inside the cockpit, a full system eventually will be mounted outside the host vehicle to enable UV and X-ray observations that are inaccessible from the ground. Source:

Posted in: News, Sensors


New Serenity Payload Detects Hostile Fire

Two government-developed sensors are working together to increase the security of deployed soldiers. The Firefly and Serenity sensors employ government developed algorithms, software, and hardware to locate hostile fire around a base. The technology, a joint effort between the Army Aviation Research, Development and Engineering Center, or AMRDEC, and the Army Research Lab, referred to as ARL, has been under development for more than a decade.

Posted in: News, Cameras, Optics, Photonics, Detectors, Sensors


Sensor Uses Radio Waves to Detect Subtle Pressure Changes

Stanford engineers have invented a wireless pressure sensor that has already been used to measure brain pressure in lab mice with brain injuries. The underlying technology has such broad potential that it could one day be used to create skin-like materials that can sense pressure, leading to prosthetic devices with the electronic equivalent of a sense of touch. In one simple demonstration they used this wireless pressure sensor to read a team member’s pulse without touching him.

Posted in: News, Metals, Plastics, Antennas, Detectors, Sensors