Sensors/Data Acquisition

Fabrication of a Nanopipette Array for Biosensing

Ames Research Center, Moffett Field, California Development of biosensors is an active field due to a wide range of applications in lab-on-a-chip, diagnostics of infectious diseases, cancer diagnostics, environment monitoring, biodetection, and others. One of the strategies used for selective identification of a target is to preselect a probe that has a unique affinity for the target, or can uniquely interact or hybridize with the target — a lock and key approach. In this approach, one then needs a platform to support the probe and a recognizing element that can recognize the said interaction between the probe and the target. Electrical readout biosensors have gained much attention because, in principle, they can be made more compact than optical technologies.

Posted in: Briefs, Sensors

Read More >>

A Resistive, High-Voltage, Differential Input Interface in a 3.3-V BiCMOS 0.5-μm Process for Extreme Environments

NASA’s Jet Propulsion Laboratory, Pasadena, California Wide-temperature and extreme-environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme-environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Power Management, Sensors

Read More >>

Precision Current Input With Well-Defined Current Limiting for Extreme Environment Applications

NASA’s Jet Propulsion Laboratory, Pasadena, California Wide temperature and extreme environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Power Management, Sensors

Read More >>

Algorithm for Estimating PRC Wavefront Errors from Shack-Hartmann Camera Images

Phase retrieval is used for the calibration and the fine-alignment of an optical system. NASA’s Jet Propulsion Laboratory, Pasadena, California Phase retrieval (PR) and Shack-Hartmann Sensor (SHS) are the two preferred methods of image-based wavefront sensing widely used in various optical testbeds, adaptive optical systems, and ground- and space-based telescopes. They are used to recover the phase information of an optical system from defocused point source images (PR) and focused point source or extended scene images (SHS). For example, the Terrestrial Planet Finder Coronagraph’s (TPF-C’s) High-Contrast Imaging Testbed (HCIT) uses a PR camera (PRC) to estimate, and subsequently correct, the phase error at the exit pupil of this optical system. Several other test-beds at JPL were, and will be, equipped with both a PRC and a Shack-Hartmann camera (SHC).

Posted in: Briefs, TSP, Cameras, Optics, Sensors

Read More >>

Negative Dielectric Constant Material Based on Ion-Conducting Materials

Langley Research Center, Hampton, Virginia Metamaterials, or artificial negative index materials (NIMs), have generated great attention due to their unique and exotic electromagnetic properties. A negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI).

Posted in: Briefs, TSP, Energy Storage, Sensors

Read More >>

Guarded Two-Dimensional Flat Plate Insulation Test Calorimeter with Attach Points

Consistent test results are obtained in a cost-effective, safe, reliable, and practical manner. John F. Kennedy Space Center, Florida Insulation systems usually do not operate on their own; they must work together with a structural system that is designed to support the article being insulated. Typically this structure penetrates the insulation, degrading it in some manner, and gives a pathway for the conduction of unwanted heat. High-performance insulation systems that use reflective foils are highly anisotropic (the heat flows more easily in one direction than the others), so disturbing the temperature gradients through the material can cause much greater effects than are due to the disturbances alone.

Posted in: Articles, Briefs, TSP, Data Acquisition, Sensors

Read More >>

Test, Calibration, and Training Target for a Microwave Sensor

NASA’s Jet Propulsion Laboratory, Pasadena, California Human subjects are unsuitable for objective performance testing of victim detection radar because their heart and respiration rates are not controllable or repeatable. There are limitations on human targets from a safety standpoint as well. It is difficult to relate the ground truth to the measured data for a human target without needing additional equipment that must be attached to the human subject. Artificial targets using pneumatics do not provide sufficient fidelity of the radar return for development of identification algorithms.

Posted in: Articles, Briefs, TSP, Sensors

Read More >>