Sensors

Integrity Sensing With Smart Polymers and Rubber Components on Vehicles

This technology has the potential to improve the quality and provide stability monitoring of materials and connections within seals, tires, and hoses. This research provides a capacitance-based method for monitoring the integrity of tires and other polymeric products during manufacturing and throughout the useful product life. Tires are complex composite structures composed of layers of formulated cross-linked rubber, textiles, and steel reinforcement layers. Tire production requires precise manufacturing through chemical and mechanical methods to achieve secure attachment of all layers. Tires are subjected to a variety of harsh environments, experience heavy loads, intense wear, heat, and in many cases, lack of maintenance. These conditions make tires extremely susceptible to damage.

Posted in: Physical Sciences, Sensors, Briefs

Read More >>

Blade Tip Clearance Sensors for Engine Health Monitoring

These sensors are rugged enough to monitor gas turbine engine blades throughout the life of the engine. Blade health monitoring continues to gain interest as a means of assessing the health of turbine airfoils in aerospace and ground-based gas turbine engines in fleet operation. Many types of blade sensors are used throughout the design validation process of new engines that would theoretically provide information for blade health monitoring. However, most of these sensors are either too difficult to use or do not have sufficient survivability to monitor blades throughout the operational life of the engine.

Posted in: Physical Sciences, Sensors, Briefs

Read More >>

Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

This concept has great relevance to Earth science and future planetary exploration. The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow.

Posted in: Physical Sciences, Sensors, Briefs

Read More >>

Software Suite to Support In-Flight Characterization of Remote Sensing Systems

A characterization software suite was developed to facilitate NASA’s in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error.

Posted in: Software, Sensors, Briefs

Read More >>

Visual Image Sensor Organ Replacement

This innovation is a system that augments human vision through a technique called “Sensing Super-position” using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks.

Posted in: Bio-Medical, Software, Imaging & Diagnostics, Biosensors, Imaging, Displays/Monitors/HMIs, Sensors, Medical, Briefs, MDB

Read More >>

Integrating Force Sensors into Robotic Surgery

Force sensing resistors provide tactile feedback during robotic surgery. Due to advances in electronics and technology, robotic surgery has become increasingly popular. Surgeons no longer have to operate directly on a patient, but instead can control a robot to carry out the procedure. Robotic surgery has benefits to both the surgeon and the patient. For the surgeon, robots display 3D visualization for enhanced viewing of the operative area and improve the control, precision, and range of motion of smaller instruments. While robotic surgery may seem like the future of the medical industry, it still has obstacles to overcome. One significant disadvantage to robotic surgery is the lack of haptic technology, which provides physical sensations that enable electronics to give their users force feedback.

Posted in: Bio-Medical, Manufacturing & Prototyping, Surgical Robotics/Instruments, Biosensors, Sensors, Medical, Briefs, MDB

Read More >>

Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

A device based on this technology may be used as a miniature patch worn by people with disabilities to improve posture and locomotion, and to enhance adaptability or skill acquisition. Crewmembers returning from long duration space flight face significant challenges due to the microgravity induced inappropriate adaptations in balance/sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain’s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/ portable providing imperceptible electrical stimulation to the balance organs of the human body.

Posted in: Bio-Medical, Sensors, Rehabilitation & Physical Therapy, Medical, Briefs

Read More >>

White Papers

Tubing & Hose Buying Tips
Sponsored by Newage Industries
The Ultimate Shaft-To-Hub Connection
Sponsored by Stoffel Polygon
Magnetics Design: Specification, Performance & Economics
Sponsored by Datatronics
High-Speed A/Ds for Real-Time Systems
Sponsored by Pentek
Windows CE Development for RISC Computers Made Easy
Sponsored by Sealevel
Tubing & Hose Buying Tips, Part 2
Sponsored by Newage Industries

White Papers Sponsored By: