Sensors/Data Acquisition

Wireless Tamper Detection Sensor and Sensing System

The sensors can detect and locate cracks, material strain, or impact damage.NASA's Langley Research Center researchers have developed a wireless, connection-free inductor capacitor sensor system that can be placed on or embedded in materials and structures to monitor for and detect damage. The sensors can also be used to detect package tampering and pilfering. This innovation — SansEC (Sans Electrical Connections) — makes sensors more damage resilient and more environmentally friendly to manufacture and use.

Posted in: Briefs, Sensors, Capacitors, Sensors and actuators, Wireless communication systems, Diagnostics, Packaging


Piezoelectric Field Disturbance Sensing System and Method

This technology provides a lightweight, cost-effective solution for structural measurements.The invention developed is a piezoelectric stimulus-response quantification-based gravimeter (PEG). The PEG takes a completely innovative approach towards utilization of the piezoelectric element — quantifying the gravitational effects on them. In this way, the piezoelectric element can: (1) generate an electric charge in response to mechanical deformation, and (2) be mechanically deformed by applying electric charges. This is known as the converse-piezoelectric effect. Piezoelectric elements can be used to precisely inject energy for exciting vibratory frequencies within the element and housing, enabling the element to be used for quantifying subsequently produced electrical output. The gravimeter is capable of measuring numerous other types of physical quantities, such as thermal, magnetic, electrical, electromotive, electromagnetic, and electro-static fields, and providing static and structural information.

Posted in: Briefs, Sensors, Measurements, Electrical systems, Vibration, Test equipment and instrumentation


Intelligent Displacement Sensor Deployment Using MTConnect Protocol over Ethernet

The protocol interfaces to an intelligent sensor and provides data gathering using a PC application.Quality measurements for design validation and certification requirements sometimes call for hundreds or thousands of sensors and actuators. Maintaining such a complex system is difficult, especially over an extended time period and inevitable personnel changes. Many hours are spent tracking down sensor problems related to the sensor, associated cables, mounting hardware, or some part of the data acquisition system. These are expensive, labor-intensive hours that consume valuable technical resources.

Posted in: Briefs, Sensors, Measurements, Communication protocols, Sensors and actuators, Quality assurance


Eddy Current Probe for Surface and Sub-Surface Inspection

This technology can be used in aerospace, manufacturing, materials, and energy applications.NASA's Langley Research Center has developed a novel probe for eddy current sensor applications that improves detection depth and measurement resolution. Although the use of anisotropic magnetoresistive (AMR) sensors in eddy current probes to improve sensitivity at low frequencies and increase the detection depth is known, the high-frequency sensitivity and small size of these sensors is less explored. This new probe incorporates two induction sources (i.e., one high-frequency and one low-frequency) and an AMR sensor; the result is improved resolution in near-surface material characterization, combined with simultaneous deep-flaw detection. Addition of a second high-frequency induction source, oriented to produce a magnetic field orthogonal to the first, allows for near-surface anomaly detection in two dimensions.

Posted in: Briefs, Sensors, Measuring Instruments, Test & Measurement, Computational fluid dynamics, Sensors and actuators, Inspections


Damage Detection System for Flat Surfaces

This multidimensional system detects damage to surfaces and vessels.NASA's Kennedy Space Center (KSC) seeks to license its Multidimensional Damage Detection System for Flat Surfaces technology. The ability to detect damage to composite surfaces can be crucial, especially when those surfaces are enclosing a sealed environment that sustains human life and/or critical equipment or materials. Minor damage caused by foreign objects can, over time, eventually compromise the structural shell resulting in loss of life and/or destruction of equipment or material. The capability to detect and precisely locate damage to protective surfaces enables technicians to prognosticate the expected lifetime of the composite system, as well as to initiate repairs when needed to prevent catastrophic failure or to extend the service life of the structure.

Posted in: Briefs, Composites, Materials, Sensors, Diagnostics, Maintenance, repair, and service operations, Prognostics, Composite materials, Protective structures


Wireless Sensing System Using Open-Circuit, Electrically Conductive Spiral-Trace Sensor

This low-profile inductance-capacitance sensor is suitable for small packaging.NASA Langley Research Center researchers have developed a wireless, low-profile sensor that uses a magnetic field response measurement acquisition system to provide power to the sensor and to acquire physical property measurements from it. Unique to this sensor is the shape of the electrical trace that eliminates the need for separate inductance, capacitance, and connection circuitry. This feature gives the sensor a smaller circuit footprint to enable a smaller, flexible, and easy-to-fabricate sensor package. The shape of the electrical trace can be readily modified to sense different physical properties. Also, arranging multiple low-profile sensors together can permit the wireless data acquisition system to read the responses from all the sensors by powering just one of them.

Posted in: Briefs, Sensors, Semiconductor devices, Sensors and actuators, Wireless communication systems, Product development


Variable Permeability Magnetometer Systems and Methods for Aerospace Applications

This technology exploits the varying permeability of a magnetic material with ambient magnetic fields.NASA's Langley Research Center has developed a magnetometer that takes advantage of the unique variable permeability properties of Metglas 2714A magnetic material. By measuring directly the inductive reactance of a simple right circular cylindrical search coil through the application of current from a high-output-impedance current source driven with a 10-kHz sinusoidal voltage, a magnetic field sensor having a 700-Hz bandwidth, good linearity, and excellent noise performance with sensitivity at least as good as the 0.1 nTesla range was produced.

Posted in: Briefs, Sensors, Sensors and actuators, Product development, Magnetic materials, Semiconductors


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.