Sensors/Data Acquisition

Designing Smart Medical Devices with Force Sensing Technology

This session will explore the exciting new trend toward designing smart medical devices that provide critical force feedback to eliminate guesswork, improve outcomes, and increase consistency.

Posted in: Tech Talks, Tech Talks, Sensors

Read More >>

ORCA Prototype Ready to Observe Ocean

If selected for a NASA flight mission, the Ocean Radiometer for Carbon Assessment (ORCA) instrument will study microscopic phytoplankton, the tiny green plants that float in the upper layer of the ocean and make up the base of the marine food chain.Conceived in 2001 as the next technological step forward in observing ocean color, the ORCA-development team used funding from Goddard’s Internal Research and Development program and NASA’s Instrument Incubator Program (IIP) to develop a prototype. Completed in 2014, ORCA now is a contender as the primary instrument on an upcoming Earth science mission.The ORCA prototype has a scanning telescope designed to sweep across 2,000 kilometers (1,243 miles) of ocean at a time. The technology collects light reflected from the sea surface that then passes through a series of mirrors, optical filters, gratings, and lenses. The components direct the light onto an array of detectors that cover the full range of wavelengths.Instead of observing a handful of discrete bands at specific wavelengths reflected off the ocean, ORCA measures a range of bands, from 350 nanometers to 900 nanometers at five-nanometer resolution. The sensor will see the entire rainbow, including the color gradations of green that fade into blue. In addition to the hyperspectral bands, the instrument has three short-wave infrared bands that measure specific wavelengths between 1200 and 2200 nanometers for atmospheric applications.The NASA researchers will use ORCA to obtain more accurate measurements of chlorophyll concentrations, the size of a phytoplankton bloom, and how much carbon it holds. Detecting chlorophyll in various wavelengths also will allow the team to distinguish between types of phytoplankton. Suspended sediments in coastal regions could also be detected by the instrument.SourceAlso: Learn about a Ultra-Low-Maintenance Portable Ocean Power Station.

Posted in: News, Optics, Photonics, Sensors, Measuring Instruments

Read More >>

Fabrication of a Nanopipette Array for Biosensing

Ames Research Center, Moffett Field, California Development of biosensors is an active field due to a wide range of applications in lab-on-a-chip, diagnostics of infectious diseases, cancer diagnostics, environment monitoring, biodetection, and others. One of the strategies used for selective identification of a target is to preselect a probe that has a unique affinity for the target, or can uniquely interact or hybridize with the target — a lock and key approach. In this approach, one then needs a platform to support the probe and a recognizing element that can recognize the said interaction between the probe and the target. Electrical readout biosensors have gained much attention because, in principle, they can be made more compact than optical technologies.

Posted in: Briefs, Sensors

Read More >>

A Resistive, High-Voltage, Differential Input Interface in a 3.3-V BiCMOS 0.5-μm Process for Extreme Environments

NASA’s Jet Propulsion Laboratory, Pasadena, California Wide-temperature and extreme-environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme-environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Power Management, Sensors

Read More >>

Precision Current Input With Well-Defined Current Limiting for Extreme Environment Applications

NASA’s Jet Propulsion Laboratory, Pasadena, California Wide temperature and extreme environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Power Management, Sensors

Read More >>

Algorithm for Estimating PRC Wavefront Errors from Shack-Hartmann Camera Images

Phase retrieval is used for the calibration and the fine-alignment of an optical system. NASA’s Jet Propulsion Laboratory, Pasadena, California Phase retrieval (PR) and Shack-Hartmann Sensor (SHS) are the two preferred methods of image-based wavefront sensing widely used in various optical testbeds, adaptive optical systems, and ground- and space-based telescopes. They are used to recover the phase information of an optical system from defocused point source images (PR) and focused point source or extended scene images (SHS). For example, the Terrestrial Planet Finder Coronagraph’s (TPF-C’s) High-Contrast Imaging Testbed (HCIT) uses a PR camera (PRC) to estimate, and subsequently correct, the phase error at the exit pupil of this optical system. Several other test-beds at JPL were, and will be, equipped with both a PRC and a Shack-Hartmann camera (SHC).

Posted in: Briefs, TSP, Cameras, Optics, Sensors

Read More >>

Negative Dielectric Constant Material Based on Ion-Conducting Materials

Langley Research Center, Hampton, Virginia Metamaterials, or artificial negative index materials (NIMs), have generated great attention due to their unique and exotic electromagnetic properties. A negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI).

Posted in: Briefs, TSP, Energy Storage, Sensors

Read More >>