Software

Automated Imaging System Analyzes Underground Root Systems

Researchers from the Georgia Institute of Technology and Penn State University have developed an automated imaging technique for measuring and analyzing the root systems of mature plants. The technique, believed to be the first of its kind, uses advanced computer technology to analyze photographs taken of root systems in the field. The imaging and software are designed to give scientists the statistical information they need to evaluate crop improvement efforts.“We’ve produced an imaging system to evaluate the root systems of plants in field conditions,” said Alexander Bucksch, a postdoctoral fellow in the Georgia Tech School of Biology and School of Interactive Computing. “We can measure entire root systems for thousands of plants to give geneticists the information they need to search for genes with the best characteristics.”Imaging of root systems has, until now, largely been done in the laboratory, using seedlings grown in small pots and containers. Such studies provide information on the early stages of development, and do not directly quantify the effects of realistic growing conditions or field variations in water, soil, or nutrient levels.The technique developed by Georgia Tech and Penn State researchers uses digital photography to provide a detailed image of roots from mature plants in the field. Individual plants to be studied are dug up and their root systems washed clean of soil. The roots are then photographed against a black background using a standard digital camera pointed down from a tripod. A white fabric tent surrounding the camera system provides consistent lighting.The resulting images are then uploaded to a server running software that analyzes the root systems for more than 30 different parameters, including the diameter of tap roots, root density, the angles of brace roots, and detailed measures of lateral roots.SourceAlso: Learn about Strobing to Enhance Display Legibility.

Posted in: Electronics & Computers, Cameras, Imaging, Software, Test & Measurement, Measuring Instruments, News

Read More >>

3D Printer That Could Build a Home in 24 Hours Wins Global Design Competition

New York, NY – Contour Crafting, a computerized construction method that rapidly 3D prints large-scale structures directly from architectural CAD models, has been awarded the grand prize of $20,000 in the 2014 "Create the Future" Design Contest. Contour Crafting automates the construction of whole structures and radically reduces the time and cost of construction. The large-scale 3D printing technology is revolutionary to the construction industry and could lead to affordable building of high-quality, low-income housing; the rapid construction of emergency shelters; and on-demand housing in response to disasters. NASA is looking at the technology for building moon and Mars bases. Behrokh Khoshnevis, a professor at University of Southern California, who invented Contour Crafting, views this invention as a proven concept. “Bringing 3D printing to construction is bringing a concept to a proven application. For many years, building has been done in layers – concrete foundation blocks, brick laying, structural framing, etc.” “I am very happy to receive this award and find it to be very timely as I am in the process of fund raising and I think this recognition will help me greatly in furthering the project,” said Khoshnevis. Contour Crafting was among the 1,074 new product ideas submitted in the 12th annual design contest, which was established in 2002 to recognize and reward engineering innovations that benefit humanity, the environment, and the economy. This year’s design contest was co-sponsored by COMSOL (www.comsol.com) and Mouser Electronics (www.mouser.com). Analog Devices and Intel were supporting sponsors. In addition to the grand prize of $20,000, first-place winners (of Hewlett-Packard workstations) were named in seven categories: *Aerospace & Defense: The Polariton Interferometer - a Novel Inertial Navigation System Frederick Moxley A stealth navigation system that provides precise course-plotting while operating independently from GPS. *Automotive/Transportation: Continuously Variable Displacement Engine Steve Arnold A continuously variable stroke engine that operates at 30% better fuel efficiency than conventional thick stroke engine designs. *Consumer Products: NanoFab Lab...in a Box! Jonathan Moritz (Team Leader) An educational kit that brings nanomanufacturing out of the cleanroom and into the classroom. *Electronics: A Paradigm Shift for SMT Electronics Jim Hester (Team Leader) Micro-coil springs that provide flexible electrical interconnections for integrated circuit packages, preventing connection breaks due to heat and vibration. *Machinery/Automation/Robotics  – sponsored by Maplesoft: Automatic Eye Finder & Tracking System Rikki Razdan (Team Leader) Real-time point-of-gaze eye tracking system that allows users to control computer input through "Look and Click" applications.  *Medical: HemeChip for Early Diagnosis of Sickle Cell Disease Yunus Alapan (Team Leader) A biochip that can rapidly, easily, and conclusively identify the hemoglobin type in blood to diagnose Sickle Cell Disease in newborns. *Sustainable Technologies: Ecovent Systems - Making Every Room the Right Temperature Dipul Patel (Team Leader) A system of wireless vents and sensors that makes any forced air heating and cooling system smarter by directing conditioned air where it’s needed most. Finalists were selected by senior editors at Tech Briefs Media Group and judged by an independent panel of design engineers. Visitors to the contest Web site could vote on entries, with the 10 most popular designs awarded a Sphero mobile game system by Orbotix. For more information, visit www.createthefuturecontest.com.          

Posted in: Electronics & Computers, Electronic Components, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Green Design & Manufacturing, Software, Computer-Aided Design (CAD), Medical, Diagnostics, Machinery & Automation, Semiconductors & ICs, Nanotechnology, News, Automotive

Read More >>

New Algorithm Lets Cheetah Robot Run

Speed and agility are hallmarks of the cheetah: The big predator is the fastest land animal on Earth, able to accelerate to 60 mph in just a few seconds. As it ramps up to top speed, a cheetah pumps its legs in tandem, bounding until it reaches a full gallop.Now MIT researchers have developed an algorithm for bounding that they’ve successfully implemented in a robotic cheetah — a sleek, four-legged assemblage of gears, batteries, and electric motors that weighs about as much as its feline counterpart. The team recently took the robot for a test run on MIT’s Killian Court, where it bounded across the grass at a steady clip. In experiments on an indoor track, the robot sprinted up to 10 mph, even continuing to run after clearing a hurdle. The MIT researchers estimate that the current version of the robot may eventually reach speeds of up to 30 mph.The key to the bounding algorithm is in programming each of the robot’s legs to exert a certain amount of force in the split second during which it hits the ground, in order to maintain a given speed: In general, the faster the desired speed, the more force must be applied to propel the robot forward. In experiments, the team ran the robot at progressively smaller duty cycles, finding that, following the algorithm’s force prescriptions, the robot was able to run at higher speeds without falling. Sangbae Kim, an associate professor of mechanical engineering at MIT, says the team’s algorithm enables precise control over the forces a robot can exert while running. SourceAlso: Learn about Hall Thrusters for Robotic Solar System Exploration.

Posted in: Motion Control, Motors & Drives, Software, Machinery & Automation, Robotics, News

Read More >>

Emerging Trends in ENGINEERING SIMULATION

The increasingly global, fast-paced, and connected nature of the marketplace is placing new demands on product development teams. As it evolves to meet emerging user needs, engineering simulation remains an essential tool for launching new designs quickly and cost-effectively — while also ensuring that they will thrive in the real world.

Posted in: Software, Articles

Read More >>

Designing Reliable Robots for Moon Exploration

Simulation plays a key role in developing robots to explore the Moon. Astrobotic Technology, Inc., Pittsburgh, Pennsylvania Equipment for space exploration is almost impossible to test on Earth. Testing is expensive and cannot replicate the conditions of launch, cruise, landing, and travel across a planetary surface. As space exploration shifts to the private sector, Astrobotic Technology, Inc. is taking the lead in delivering affordable robotic technology. The company uses ANSYS technology to stay competitive, virtually testing its lunar robots on time and under budget.

Posted in: Mechanical Components, Software, Briefs

Read More >>

Designing Smaller Magnets for the Large Hadron Collider

CERN designs a smaller and more powerful superconducting accelerator magnet using ANSYS multiphysics tools. FEAC Engineering, Ioannina, Greece The European Organization for Nuclear Research (CERN) requires new magnets that are smaller than their predecessors to accommodate new instrumentation. Because of their size, these magnets need to generate a 24 percent stronger magnetic field and the structure must provide for near-zero deformation of the conductor. Even a small deformation could increase the electrical resistance and raise the temperature enough to cause the conductor to lose its superconducting state. Engineers addressed this challenge using ANSYS electromagnetic, thermal, and structural simulation tools. Coupling the multiphysics domains in the ANSYS® Workbench® environment allowed the team to optimize the design by simultaneously considering all of the physics.

Posted in: Physical Sciences, Software, Briefs

Read More >>

Electrical Calibration Source for Next-Generation Oscilloscope

Simulation helps cool the calibration head for the world’s fastest real-time oscilloscope. Keysight Technologies, Santa Clara, California Keysight Technologies (formerly Agilent Technologies) develops world-leading equipment for solving tough measurement challenges. The company’s Infiniium 90000 Q-Series oscilloscope is the first to reach the 60 GHz barrier, enabling engineers to make measurements on a new generation of fiber optic transponders and systems that provide higher levels of data communication speeds than previously possible.

Posted in: Physical Sciences, Software, Briefs

Read More >>

White Papers

Primer on Laser Micromachining of Polymer-Based Life Science Products
Sponsored by Resonetics
Inclinometers for Motion Control
Sponsored by Fraba Posital
High-Speed A/Ds for Real-Time Systems
Sponsored by Pentek
Domestic Versus Offshore PCB Manufacturing
Sponsored by Sunstone Circuits
Cultural audits: What are they and why are they essential?
Sponsored by B Braun
Next-Generation, Miniature High Voltage Power Modules
Sponsored by EMCO High Voltage

White Papers Sponsored By: