Test & Measurement

Advanced Rolling Mechanics Analysis (AROMA) 1.0

Lyndon B. Johnson Space Center, Houston, Texas AROMA uses a boundary-element formulation to calculate normal and shear pressure distributions and sub-surface stresses for elastic bodies in contact. In addition to handling static normal and sheer loading, it also solves the contact problem for rolling elements such as bearings, traction drives, and wheel-to-rail interfaces. AROMA is a powerful and flexible tool for studying the tractive forces that arise during rolling in combination with kinematic effects, such as creepage and spin that are related to rolling element alignment. This GUI-based tool was developed in MATLAB, and can run within the MATLAB environment or as a standalone application.

Posted in: Briefs, Motion Control, Software, Measuring Instruments

Read More >>

Product of the Month: March 2015

Instron, Norwood, MA, introduced the AVE 2 strain measurement system that conforms to testing standards such as ISO 527, ASTM D3039, and ASTM D638. The video extensometer utilizes patented measurement technology, and adapts to the normal fluctuations of indoor environmental conditions. It can be adapted to any testing machine that uses a ±10V analog input. Designed to reduce errors from thermal and lighting variations, the device uses the real-time 490-Hz data rate while achieving a 1-micron accuracy. It allows for testing under multiple environmental conditions and can be used for strain measurement with Digital Image Correlation (DIC). The device measures both modulus and strain-to-failure of most materials including plastics, metals, composites, textiles, films, and bio-materials.

Posted in: Products, Manufacturing & Prototyping, Materials, Measuring Instruments

Read More >>

Vision Algorithms Catch Defects in Screen Displays

Software based on NASA vision research is used in making laptop, cellphone, and TV displays. NASA has sent more than a few robotic missions into space, but it never loses sight of its goal to enable human exploration of the cosmos. A core component of planning for future manned missions is the Human Systems Integration Division, headquartered at Ames Research Center, that focuses on advancing our understanding of how people process information and interact with mechanical and electronic systems.

Posted in: Articles, Imaging, Software, Test & Measurement

Read More >>

Data Recorders Prepare Orion for Splashdown Test

Data recorders and software Diversified Technical Systems (DTS) Seal Beach, CA 562-493-0158 www.dtsweb.com It’s no simple task to travel 3,600 miles into space, blaze back through Earth’s atmosphere at 20,000 mph with temperatures approaching 4,000 °F, and then splash-land into the Pacific Ocean. That’s why NASA spent three years dropping the 18,000-pound mockup of the Orion space capsule into a special test pool wired with hundreds of sensors, strain gauges, and accelerometers to measure stresses and structural integrity, as well as the safety of future astronauts onboard.

Posted in: Application Briefs, Aerospace, Data Acquisition, Measuring Instruments, Test & Measurement

Read More >>

Nozzle Heat Flux Gauge

Marshall Space Flight Center, Alabama This innovation is a tungsten-rhenium gauge that can be placed into an aft exit cone of a rocket motor. It will measure heat flux with time for the full duration of the RSRM (reusable solid rocket motor) nozzle environment with equal response time.

Posted in: Briefs, Mechanical Components, Measuring Instruments

Read More >>

Magnetic Sensitivity of a Ka-Band Isolator Measured Using the GRAIL Testbed

NASA’s Jet Propulsion Laboratory, Pasadena, California The magnetic sensitivity of a Ka-band isolator’s output phase is measured at 7 × 10–4 deg/G level. This high degree of precision is enabled by the sensitive phase measuring capabilities of a testbed built to mimic NASA’s Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. Its ground-based testbed was used to measure the magnetic sensitivity of a flight-spare Ka-band isolator, and the authors found it to be 0.0052 ±0.0007 deg/G along its most sensitive axis. The GRAIL mission was able to incorporate microwave isolators into its instrumentation because the spacecraft orbited the Moon and, thus, did not travel through a permanent magnetic field as it would in a mission around Earth. Understanding this magnetic sensitivity is key to evaluating the impact an isolator would have on data quality for future gravity missions such as GRACE-FO (Gravity Recover and Climate Experiment — Follow On), a scheduled follow-on mission to GRACE, which has been mapping out Earth’s gravity for over a decade.

Posted in: Briefs, Electronics & Computers, Information Sciences, Software, Measuring Instruments, Test & Measurement

Read More >>

ORCA Prototype Ready to Observe Ocean

If selected for a NASA flight mission, the Ocean Radiometer for Carbon Assessment (ORCA) instrument will study microscopic phytoplankton, the tiny green plants that float in the upper layer of the ocean and make up the base of the marine food chain.Conceived in 2001 as the next technological step forward in observing ocean color, the ORCA-development team used funding from Goddard’s Internal Research and Development program and NASA’s Instrument Incubator Program (IIP) to develop a prototype. Completed in 2014, ORCA now is a contender as the primary instrument on an upcoming Earth science mission.The ORCA prototype has a scanning telescope designed to sweep across 2,000 kilometers (1,243 miles) of ocean at a time. The technology collects light reflected from the sea surface that then passes through a series of mirrors, optical filters, gratings, and lenses. The components direct the light onto an array of detectors that cover the full range of wavelengths.Instead of observing a handful of discrete bands at specific wavelengths reflected off the ocean, ORCA measures a range of bands, from 350 nanometers to 900 nanometers at five-nanometer resolution. The sensor will see the entire rainbow, including the color gradations of green that fade into blue. In addition to the hyperspectral bands, the instrument has three short-wave infrared bands that measure specific wavelengths between 1200 and 2200 nanometers for atmospheric applications.The NASA researchers will use ORCA to obtain more accurate measurements of chlorophyll concentrations, the size of a phytoplankton bloom, and how much carbon it holds. Detecting chlorophyll in various wavelengths also will allow the team to distinguish between types of phytoplankton. Suspended sediments in coastal regions could also be detected by the instrument.SourceAlso: Learn about a Ultra-Low-Maintenance Portable Ocean Power Station.

Posted in: News, Imaging, Optics, Photonics, Sensors, Measuring Instruments, Test & Measurement

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.