Test & Measurement

Heat-Flow Probe Design and Development

Applications include measuring heat flow on Earth, where optimal thermal isolation of heaters/temperature sensors is important. Marshall Space Flight Center, Alabama The lunar regolith exhibits extremely low conductivity. Penetrating the regolith presents problems if the geo-technical properties of the regolith are not well understood and accounted for.

Posted in: Briefs

Read More >>

Custom Surface Inspection System for Safety-Critical Processes

Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into the production process. Before a workpiece leaves the production plant, it is subjected to rigorous inspection. For safety-critical applications such as in the automotive or aerospace industries, manufacturers can only use the most impeccable parts.

Posted in: News, Cameras, Consumer Product Manufacturing, Industrial Controls & Automation, Measuring Instruments

Read More >>

New Laser Technology to Make 2020 Mission to Mars

NASA announced recently that laser technology originally developed at Los Alamos National Laboratory has been selected for its new Mars mission in 2020. SuperCam, which builds upon the successful capabilities demonstrated aboard the Curiosity Rover during NASA’s current Mars Mission, will allow researchers to sample rocks and other targets from a distance using a laser.

Posted in: News, Electronics, Lasers & Laser Systems, Photonics, Machinery & Automation, Detectors, Sensors, Measuring Instruments

Read More >>

NASA Begins Engine Test of Space Launch System Rocket

Engineers are preparing to test parts of NASA's Space Launch System (SLS) rocket that will send humans to space. They installed an RS-25 engine on the A-1 Test Stand at Stennis Space Center. The Stennis team will perform developmental and flight certification testing of the RS-25 engine, a modified version of the space shuttle main engine. The SLS's core stage will be powered by a configuration of four RS-25 engines.

Posted in: News, Aviation, Motors & Drives, Power Transmission

Read More >>

Airbags Take the Weight in Load Tests of Aircraft

NASA Armstrong Flight Research Center’s Flight Loads Laboratory completed structural evaluations on a modified Gulfstream G-III aircraft that will serve as a test bed for the Adaptive Compliant Trailing Edge (ACTE) project. The loads tests assisted engineers in predicting the levels of structural stress the airplane will likely experience during ACTE research flights. And for the first time, some unusual hardware aided the process: the aircraft was supported by three large inflatable airbags during the tests.

Posted in: News, Aviation

Read More >>

Three Things You Can’t Measure if Your Oscilloscope Doesn’t Have Enough Memory

Modern oscilloscopes come equipped with a host of different attributes, and many vendors tout their latest additions as “must have” features. With so many attributes and marketing messages, recalling the importance of a long-held attribute such as memory depth can become lost in the noise. However, any engineer who has grappled with shallow memory on an oscilloscope will be vocal about the frustration of the experience. Those who aren’t vocal simply haven’t stumbled on an issue that required it — yet.

Posted in: Articles

Read More >>

Astronauts to Test Free-Flying Robotic 'Smart SPHERES'

Three bowling ball-size free-flying Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) have been flying inside the International Space Station since 2006. These satellites provide a test bed for development and research, each having its own power, propulsion, computer, navigation equipment, and physical and electrical connections for hardware and sensors for various experiments.Aboard Orbital Sciences Corp.'s second contracted commercial resupply mission to the space station, which arrived to the orbital laboratory on July 16, NASA's Ames Research Center in Moffett Field, California, sent two Google prototype Project Tango smartphones that astronauts will attach to the SPHERES for technology demonstrations inside the space station. By connecting a smartphone to the SPHERES, the technology becomes "Smart SPHERES, " a more "intelligent" free-flying robot with built-in cameras to take pictures and video, sensors to help conduct inspections, powerful computing units to make calculations and Wi-Fi connections to transfer data in real time to the computers aboard the space station and at mission control in Houston.In a two-phase experiment, astronauts will manually use the smartphones to collect visual data using the integrated custom 3-D sensor to generate a full 3-D model of their environment. After the map and its coordinate system are developed, a second activity will involve the smartphones attached to the SPHERES, becoming the free-flying Smart SPHERES. As the free-flying robots move around the space station from waypoint to waypoint, utilizing the 3-D map, they will provide situational awareness to crewmembers inside the station and flight controllers in mission control. These experiments allow NASA to test vision-based navigation in a very small mobile product.SourceAlso: Learn about Automatic Lunar Rock Detection and Mapping.

Posted in: News, Aviation, PCs/Portable Computers, Power Management, Cameras, Video, Visualization Software, Machinery & Automation, Robotics, Sensors

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.