Test & Measurement

Single Photon Counting Module

Excelitas Technologies® (Waltham, MA) has introduced SPCM-NIR, a Single Photon Counting Module specifically selected and performance-optimized for the near-infrared (NIR) wavelength spectrum. This NIR-spectrum enhanced device is designed to support long-range LIDAR, quantum communication and microscopy applications. The Excelitas SPCM-NIR uses a specially selected silicon avalanche photodiode (SLiK) with peak single photon detection efficiency (PDE) at 780nm, typically better than 73%, while maintaining uniformity over a 180 μm diameter active area.

Posted in: Products, Products, Data Acquisition, Measuring Instruments

Read More >>

IEC 60601-1-2 Edition 4: New Requirements for Medical EMC

Plan now to ensure your medical devices comply with new IEC 60601-1-2 EMC 4th Edition standard requirements by the December 2018 effective date. Since the development cycle can be 2-3 years, it is important to understand the new standard now when designing medical devices.

Posted in: White Papers, White Papers, Electronics, Bio-Medical, Medical, Instrumentation

Read More >>

Six Axes of Calibration

In a system or on a lab bench, proper instrument calibration reduces the chances of false test results. Not all calibrations are equal, and six key factors affect quality, usefulness and cost. In Six Axes of Calibration, we highlight the importance and value of each factor. Download application note.

Posted in: White Papers, RF & Microwave Electronics, Instrumentation, Test & Measurement

Read More >>

Variably Transmittive, Electronically Controlled Eyewear

This technology can be used in pilot glasses, military goggles, gaming and virtual reality, and transition lenses for eyewear.During instrument flight training, the pilot must have his/her view through the aircraft windscreen restricted to simulate low-visibility conditions while permitting the pilot to view the instrument panel. In one current method, a hood is draped across the aircraft windscreen, or a face mask or blackened glasses are worn by the pilot. All such current methods create potentially hazardous disorientation and an unnatural environment for the trainee. In particular, the face mask and blackened glasses restrict the pilot’s peripheral vision, and require uncomfortable and unnatural head positions in order to see the entire instrument panel.

Posted in: Briefs, Instrumentation, Simulation and modeling, Electronic control units, Displays, Visibility

Read More >>

Method for Ground-to-Satellite Laser Calibration System

NASA’s Langley Research Center has developed the Ground-to-Space Laser Calibration (GSLC) system concept for calibrating Earth observing sensors measuring reflected radiance. GSLC is capable of calibrating sensitivity to polarization, degradation of optics, and response to stray light of spaceborne reflected solar sensors. The concept is based on using an accurate ground-based laser system pointing at and tracking the instrument on orbit during nighttime and clear atmosphere conditions. The GSLC system will be applicable to instrument calibration in both low Earth and geostationary Earth orbits.

Posted in: Briefs, Instrumentation, Calibration, Lasers, Satellite communications

Read More >>

Energy Analysis Method for Hidden Damage Detection

Better understanding of composite damage could eliminate unnecessary repairs and help prevent catastrophic in-service failure.NASA’s Langley Research Center has developed a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. The new technique requires only single-sided access to the test specimen, and uses trapped energy analysis to detect and characterize damage that was previously ob - scured. Current methods, usually ultrasound or laser ultrasound, cannot characterize imperfections below or hidden by near surface damage. The new method uses 3D custom ultrasonic simulation tools to study ultrasonic guided wave behavior and energy trapping due to multilayer delamination damage (Figure 1).

Posted in: Briefs, Instrumentation, Imaging and visualization, Composite materials, Non-destructive tests

Read More >>

Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays

This technology provides noise location and strength diagnostics for mechanical and aerodynamic systems.NASA’s Langley Research Center researchers developed DAMAS using an iterative algorithm to deconvolute noise signals, allowing for more accurate quantification of the position and strength of acoustic sources. Recent development of the DAMAS microphone phased array processing methodology allows the determination and separation of coherent and incoherent noise source distributions. The DAMAS technology represents a significant breakthrough in the field of aero-acoustics.

Posted in: Briefs, Instrumentation, Mathematical models, Acoustics, Noise

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.