Test & Measurement

Model-Based Prognostics for Batteries

Accurate predictions can be made of the remaining useful life for individual discharge cycles, as well as for cycle life. Ames Research Center, Moffett Field, California The innovation provides enhanced health management routines for batteries. A mathematical model has been developed to describe battery behavior during individual discharge cycles, as well as over the cycle life. Different prognostic modes for estimating the state of charge, state of life, end of discharge, and/or end of life of a battery are provided. It employs a mathematical, rigorous reasoning framework for better understanding and representation, manipulation, and management of the various sources of uncertainty inherent in the prognostics of the remaining useful life in a battery. The models used to estimate the remaining useful life of batteries are linked to the internal electrochemical processes of the battery. The effects of load (and, by extension, temperature) have been incorporated into the models. The model is used in conjunction with a particle filtering framework to make state estimations and probabilistic predictions of remaining useful life for individual discharge cycles, as well as for battery life. The model fidelity improves when the influence of factors like temperature, discharge C-rate, end of discharge, state of charge after charging, etc., are explicitly incorporated. Model validation studies were conducted using data from a series of battery cycling experiments at various thermal and electrical loading conditions. In addition, the models and algorithms were integrated on an electric UAV and subsequently flown on numerous test flights.

Posted in: Test & Measurement, Briefs, TSP

Read More >>

Goddard Mission Services Evolution Center Compliance Test Suite

Goddard Space Flight Center, Greenbelt, Maryland To reduce the cost of building specialized interfaces, missions can adopt Goddard Mission Services Evolution Center (GMSEC) technologies and applications. Assurances need to be made that application implementation should follow the GMSEC messaging standards. The GMSEC Interface Specification Document (ISD) sets forth definitions for all GMSEC message types.

Posted in: Test & Measurement, Software, Briefs, TSP

Read More >>

Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing

Goddard Space Flight Center, Greenbelt, Maryland This innovation consists of a procedure and set of equations that allows thermal balance steady-state temperatures to be predicted hours before the balance is reached based on current temperature and rate-of-change measurements. This will allow tests to run faster, since thermal plateau settings may be adjusted prior to reaching an equilibrium state. Additionally, it will allow the test conductors to identify future limit violations hours before they may happen, which would increase flight hardware safety. A similar methodology can be used to predict component temperatures in flight, assuming a relatively constant sink temperature condition, which would be useful for long cool-down missions such as the James Webb Space Telescope (JWST).

Posted in: Test & Measurement, Briefs, TSP

Read More >>

Trajectory Specification for High-Capacity Air Traffic Control

Automating separation monitoring and guidance would relieve human controllers of the primary responsibility for safe separation. The doubling or tripling of airspace capacity that will be needed over the next several decades will require that tactical separation guidance be automated for appropriately equipped aircraft in high-density airspace. Four-dimensional (4D) trajectory assignment (three-dimensional position as a function of time) will facilitate such automation. A standard trajectory specification format based on XML (Extensible Markup Language) is proposed for that purpose.

Posted in: Electronics & Computers, Test & Measurement, Briefs, TSP

Read More >>

Big Ideas for Small Spaces

Over 24 hours from April 4 to 5, six top French design studios conceived and presented new product concepts for urban environments during the Small Spaces Design Hackathon, presented by Cut&Paste in partnership with Hewlett-Packard. In dense city neighborhoods, homes are small and office space is at a premium, so urban dwellers must be more creative in how they use their space. The design concepts were presented at Cyclone Le Studio as part of ZED, HP’s creative popup space.

Posted in: Electronics & Computers, Power Management, PCs/Portable Computers, Imaging, Displays/Monitors/HMIs, Software, Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Energy, Lighting, Test & Measurement, Monitoring, News

Read More >>

Optical Inspection System Finds Defects in Ultra-High-Speed Manufacturing

Researchers at the Fraunhofer Institute for Physical Measurement Techniques IPM in Germany have developed an optical inspection system called WIRE-AOI that can detect defects in strip products such as pipes, rails, and wires in real time. The system detects micro-defects that zoom past it at 10 meters per second, and are no thicker than a human hair. Workers then see the processed defects depicted graphically on a monitor, and can remove the corresponding pieces.

Posted in: Cameras, Imaging, Photonics, Optics, Test & Measurement, Measuring Instruments, News

Read More >>

NASA Radar Demonstrates Ability to Predict Sinkholes

New analyses of NASA airborne radar data collected in 2012 reveal that radar detected indications of a huge sinkhole before it collapsed and forced evacuations in Louisiana that year. The findings suggest such radar data, if collected routinely from airborne systems or satellites, could at least in some cases foresee sinkholes before they happen, decreasing danger to people and property.

Posted in: Environmental Monitoring, Green Design & Manufacturing, Sensors, Test & Measurement, Monitoring, Aerospace, RF & Microwave Electronics, News

Read More >>