Test & Measurement

Nonlinear Swept Frequency Technique for CO2 Measurements Using a CW Laser System

The measurements would be used to significantly reduce the uncertainties in global estimates of CO2, improve climate models, and close the carbon budget for improved forecasting and policy decisions.

The U.S. National Research Council recently identified the need for a near-term space mission of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS). The primary objective of the ASCENDS mission is to make CO2 column measurements across the troposphere during the day and night over all latitudes and all seasons, and in the presence of scattered clouds. These measurements would be used to significantly reduce the uncertainties in global estimates of CO2 sources and sinks, provide an increased understanding of the connection between climate and CO2 exchange, improve climate models, and close the carbon budget for improved forecasting and policy decisions.

Posted in: Briefs, TSP, Green Design & Manufacturing, Greenhouse Gases, Lasers & Laser Systems, Test & Measurement, Carbon dioxide, Spacecraft
Read More >>

Advanced Rolling Mechanics Analysis (AROMA) 1.0

Lyndon B. Johnson Space Center, Houston, Texas

AROMA uses a boundary-element formulation to calculate normal and shear pressure distributions and sub-surface stresses for elastic bodies in contact. In addition to handling static normal and sheer loading, it also solves the contact problem for rolling elements such as bearings, traction drives, and wheel-to-rail interfaces. AROMA is a powerful and flexible tool for studying the tractive forces that arise during rolling in combination with kinematic effects, such as creepage and spin that are related to rolling element alignment. This GUI-based tool was developed in MATLAB, and can run within the MATLAB environment or as a standalone application.

Posted in: Briefs, Motion Control, Software, Measuring Instruments, Analysis methodologies
Read More >>

Nozzle Heat Flux Gauge

Marshall Space Flight Center, Alabama

This innovation is a tungsten-rhenium gauge that can be placed into an aft exit cone of a rocket motor. It will measure heat flux with time for the full duration of the RSRM (reusable solid rocket motor) nozzle environment with equal response time.

Posted in: Briefs, Mechanical Components, Measuring Instruments, Nozzles, Rocket engines, Thermal testing
Read More >>

Magnetic Sensitivity of a Ka-Band Isolator Measured Using the GRAIL Testbed

NASA’s Jet Propulsion Laboratory, Pasadena, California

The magnetic sensitivity of a Ka-band isolator’s output phase is measured at 7 × 10–4 deg/G level. This high degree of precision is enabled by the sensitive phase measuring capabilities of a testbed built to mimic NASA’s Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. Its ground-based testbed was used to measure the magnetic sensitivity of a flight-spare Ka-band isolator, and the authors found it to be 0.0052 ±0.0007 deg/G along its most sensitive axis. The GRAIL mission was able to incorporate microwave isolators into its instrumentation because the spacecraft orbited the Moon and, thus, did not travel through a permanent magnetic field as it would in a mission around Earth. Understanding this magnetic sensitivity is key to evaluating the impact an isolator would have on data quality for future gravity missions such as GRACE-FO (Gravity Recover and Climate Experiment — Follow On), a scheduled follow-on mission to GRACE, which has been mapping out Earth’s gravity for over a decade.

Posted in: Briefs, Electronics & Computers, Information Sciences, Software, Measuring Instruments, Test & Measurement, Computer simulation, Test equipment and instrumentation, Test procedures, Spacecraft
Read More >>

Method for Performing GPS L1 C/A Measurements in Wideband Jamming and Interference

John F. Kennedy Space Center, Florida

For effective range safety, global positioning system (GPS) metric tracking must be robust to interference with, and jamming of, GPS signals. The conventional approach to mitigating interference and jamming is to use a Controlled Reception Pattern Antenna (CRPA). These few-element phased arrays are used to steer nulls in the directions of interference sources, and/or to point beams in the directions of GPS satellites. The use of CRPAs is limited by their cost and size, as well as the difficulties of integrating the array into a platform. The problems are compounded for a launch vehicle, which must acquire and track GPS signals at high speed and acceleration, and undergo vibration and temperature conditions not common to CRPA use.

Posted in: Articles, Briefs, TSP, Communications, Test & Measurement, Antennas, Global positioning systems, Global positioning systems (GPS), Satellites
Read More >>

JWST IV&V Simulation and Test (JIST) RT Logic T501 Emulator

Emulator using only software implements the behavior of a processor.

Goddard Space Flight Center, Greenbelt, Maryland

In order to develop a software-only test environment for the James Webb Space Telescope (JWST) mission, a solution was needed to send commands and receive telemetry between the TCTS (Telemetry and Command Test Set) and CMM-S card. The as-is solution requires the utilization of commercial off-the-shelf hardware (RT Logic Telemetrix T501 processor) and custom CMM-S hardware.

Posted in: Articles, Briefs, TSP, Electronics & Computers, Information Sciences, Software, Test & Measurement, Computer software and hardware, Telemetry, Test equipment and instrumentation
Read More >>

Cooling Test Samples With a Combined Convective and Conductive System to Rapidly Reach 77 K

This innovation enables rapid cooling to 77 K of James Webb Space Telescope shields, which enables hypervelocity impact testing with micro-particle spheres.

Lyndon B. Johnson Space Center, Houston, Texas

In this innovation, a team successfully developed and implemented a combined convective and conductive cooling system that permits rapid cooling. Using a spray system, liquid nitrogen (LN2) was injected into a test article enclosure located in the target tank that was evacuated to a lower pressure than the surrounding ambient pressure of the White Sands Test Facility (WSTF). According to the saturation curve for nitrogen, temperatures lower than 77 K can be achieved by using the evaporative process as long as the pressure remains above the triple point where nitrogen ice is formed.

Posted in: Articles, Briefs, TSP, Mechanical Components, Mechanics, Test & Measurement, Containers, Cooling, Spraying, Test equipment and instrumentation
Read More >>

Guarded Two-Dimensional Flat Plate Insulation Test Calorimeter with Attach Points

Consistent test results are obtained in a cost-effective, safe, reliable, and practical manner.

Insulation systems usually do not operate on their own; they must work together with a structural system that is designed to support the article being insulated. Typically this structure penetrates the insulation, degrading it in some manner, and gives a pathway for the conduction of unwanted heat. High-performance insulation systems that use reflective foils are highly anisotropic (the heat flows more easily in one direction than the others), so disturbing the temperature gradients through the material can cause much greater effects than are due to the disturbances alone.

Posted in: Articles, Briefs, TSP, Data Acquisition, Sensors, Test & Measurement, Failure modes and effects analysis, Systems engineering, Insulation, Test equipment and instrumentation
Read More >>

Test, Calibration, and Training Target for a Microwave Sensor

Human subjects are unsuitable for objective performance testing of victim detection radar because their heart and respiration rates are not controllable or repeatable. There are limitations on human targets from a safety standpoint as well. It is difficult to relate the ground truth to the measured data for a human target without needing additional equipment that must be attached to the human subject. Artificial targets using pneumatics do not provide sufficient fidelity of the radar return for development of identification algorithms.

Posted in: Articles, Briefs, TSP, Sensors, Test & Measurement, Calibration, Radar, Sensors and actuators, Radiation, Test procedures
Read More >>

Process-Hardened, Multi-Analyte Sensor for Characterizing Multiple Rocket Plume Constituents in a Test Environment

A multi-analyte measurement capability is integrated into a single sensor.

Stennis Space Center, Mississippi

Stennis Space Center (SSC) is one of three government-operated rocket engine test facilities in the United States and is the primary center for testing and flight-certifying rocket propulsion systems for future space vehicles. Safety is a top priority at NASA-SSC. To safely test and certify rocket engines, monitoring technologies for rocket test stands, which (1) verify compliance with federal, state, and local government guidelines; (2) ensure a safe work environment for its personnel at ground testing facilities; as well as (3) monitor environmental impacts, are all required. Additionally, NASA has a need to monitor engine combustion efficiencies and engine health of a variety of launch vehicle configurations utilizing liquid oxygen, liquid hydrogen, isopropanol, and kerosene. Multi-analyte measurement technology is essential for a safe and effective working environment. Therefore, for the advancement in multi-analyte technology in the rocket testing industry, a device was created that integrates multi-analyte measurements into a single sensor unit.

Posted in: Articles, Briefs, Sensors, Monitoring, Test & Measurement, Optics, Sensors and actuators, Rocket engines, Test facilities
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.