Test & Measurement

Magnetic and Raman-Based Method for Process Control During Fabrication of Carbon-Nanotube-Based Structures

The methodology enables high quality and high yield with about 30% weight reduction over carbon composite materials.

NASA’s Langley Research Center has developed an innovative magnetic and Raman-based method for macroscopic process control during fabrication of carbon-nanotube-based structures. The development of super-strong, lightweight materials based on carbon nanotubes promises new materials with the strength of current carbon composite materials, but at substantially less weight. The development of these new materials is dependent upon nanotube quality, alignment, and load transfer between individual nanotubes in the structure. However, current fabrication process controls are limited to time-consuming microscopy testing at intermittent stages during processing. NASA’s innovative method can be applied during nanotube structure fabrication to obtain real-time feedback on critical processing parameters during fabrication. Moreover, the method is compatible with in-line fabrication processes.

Posted in: Briefs, Instrumentation, Fabrication, Composite materials, Lightweight materials, Nanotechnology, Quality control
Read More >>

AGM Thumbtack™ Valves for Small Enclosures: Smaller and Drier

Sensitive equipment such as optics and electronics can be damaged by humidity and condensation. Placing moisture-sensitive equipment inside a sealed enclosure reduces the risk of damage, but temperature and pressure variations can be problematic for a sealed enclosure if it does not have a pressure-relief mechanism.

Posted in: White Papers, Defense, Electronics, Electronics & Computers, Instrumentation
Read More >>

Choosing the Right Hardware for Testing in Harsh Environments

Testing in rugged applications often includes testing in extreme temperature ranges, which can add constraints to hardware. Cold-start engine testing, for example, uses a test cell that can drop to -40 °C and requires continuous data acquisition such as temperature, pressure, and other various measurements. Placing hardware that is not built to withstand this range into harsh environments can cause components within the hardware to work incorrectly and result in incorrect data or damage to the hardware.

Posted in: Articles, Test & Measurement, Cold weather, Hardware, Test equipment and instrumentation
Read More >>

Keysight Technologies Engineering Education and Research Resources DVD 2016

Keysight is enabling the next generation of engineers to tackle and solve the toughest electronic design and test challenges. With 200 new items in areas relating to education and research (Software Design & Simulation Solutions; Communications Technology; Test & Measurement Science; Nanotechnology & Material Measurement; Power, Energy & Automotive; and Classroom Applications), it includes application notes, white papers, case studies, videos, webcasts, and details on various Keysight solutions. Order your DVD today!

 

 

Posted in: White Papers, Electronics & Computers, RF & Microwave Electronics, Test & Measurement
Read More >>

In-Flight Pitot-Static Calibration

This precise yet time- and cost-effective method is based on GPS technology using output error optimization.

NASA’s Langley Research Center has developed a new method for calibrating pitot-static air data systems used in aircraft. Pitot-static systems are pressure-based instruments that measure the aircraft’s airspeed. These systems must be calibrated in flight to minimize potential error. Current methods — including trailing cone, tower fly-by, and pacer airplane — are time- and cost-intensive, requiring extensive flight time per calibration. NASA’s method can reduce this calibration time by up to an order of magnitude, cutting a significant fraction of the cost. In addition, NASA’s calibration method enables near-real-time monitoring of error in airspeed measurements, which can be used to alert pilots when airspeed instruments are inaccurate or failing. Because of this feature, the technology also has applications in the health usage and monitoring (HUMS) industry. Flight test engineers can be trained to use this method proficiently in 12 days without costly specialized hardware.

Posted in: Briefs, Test & Measurement, Calibration, Pitot-static instruments
Read More >>

Real-Time Radiation Monitoring Using Nanotechnology

NASA has patented a unique chemical sensor array leveraging nanostructures for monitoring the concentration of chemical species or gas molecules that is not damaged when exposed to protons and other high-energy particles over time. The nanotechnology-enabled chemical sensor array uses single walled carbon nanotubes (SWCNTs), metal catalyst-doped SWCNTs, and polymer- coated SWCNTs as the sensing media between a pair of interdigitated electrodes (IDE). By measuring the conductivity change of the SWCNT device, the concentration of the chemical species or gas molecules can be measured. These sensors have high sensitivity, low power requirements, and are robust and have a low manufacturing cost compared to other commercial chemical sensors for detection of trace amount of chemicals in gasses and liquids.

Posted in: Briefs, Test & Measurement, Sensors and actuators, Nanotechnology, Radiation
Read More >>

External Diagnostic Method to Detect Electrical Charging in Complex Ion Trapping Systems

This procedure is implemented without breaking the vacuum and/or disassembling the system.

Electron-ionized atom trapping technology is widely used in mass spectrometry and atomic clocks. The complexity of the trapping configuration operating in an ultra-high vacuum system is driven by demands for ultimate sensitivity, performance, and fundamental science. Consequently, external diagnosis, maintenance, and design verification and validation without opening the vacuum and disassembling the system become increasingly difficult. In these ion trapping configurations, electrical charging of non-metallic materials or opening connections are a hard-to-detect problem, yet can easily compromise the intended trapping potential. More specifically, the JPL Linear Ion Trap Standards (LITS) will benefit from a non-invasive solution for system verification/validation, diagnosis, maintenance, and troubleshooting.

Posted in: Briefs, Test & Measurement, Electrical systems, Spectroscopy, Diagnostics
Read More >>

Sonar Inspection Robot System

The system surveys interior volume, interrogates structure integrity, and displays real-time video and sonar.

The robotic inspection device prototype that was used for testing.

NASA’s Johnson Space Center innovators have designed a Robotic Inspection System that is capable of surveying deep sea structures such as oil platform storage cells/tanks and pipelines in order to determine the volume of material remaining inside, interrogate structure integrity, and display real-time video and sonar. This inspection device and method could significantly reduce the cost of inspecting, and in the future, provide sampling of the structure contents. The technology is an all-in-one inspection device that includes cameras, sonar, and motion-sensing instruments with hardware and software components. This NASA-developed technology is available for licensing.

Posted in: Briefs, Test & Measurement, Robotics, Inspections, Test equipment and instrumentation
Read More >>

Modules for Inspection, Qualification, and Verification of Pressure Vessels

This automated, modular, standardized system features interchangeable probes.

After decades of composite over-wrapped pressure vessel (COPV) development, manufacturing variance is still high, and has necessitated higher safety factors and additional mass to be flown on spacecraft, reducing overall performance. When liners are used in COPVs, they need to be carefully screened before wrapping. These flaws can go undetected and later grow through the thickness of the liner, causing the liner to fail, resulting in a massive leakage of the liner and subsequent mission loss.

Posted in: Briefs, Test & Measurement, Aircraft structures, Composite materials, Inspections, Spacecraft
Read More >>

Precise Measurements on Earth Enable Further Exploration in Space

Measurement is the first step to success. If you can’t measure something accurately, it can’t be understood or improved. That is especially true for the spacecraft rockets and engines designed to operate under extreme temperatures and pressures at liftoff, or space stations the size of a six-bedroom house that must support people living and working in space for years.

Posted in: Articles, Test & Measurement, Measurements, Test equipment and instrumentation, Spacecraft
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.