NASA Spinoff

“We have a great satellite hookup and a big telemedical network at NASA, but we don’t have these for common terrestrial use,” says Dulchavsky.

To overcome this problem, they collaborated with Epiphan Systems Inc., a computer-imaging industry leader headquartered in Canada with offices in Springfield, New Jersey. The cooperation resulted in the formation of Mediphan, a remote medical diagnostics technology company. Mediphan drew on NASA expertise to adapt Epiphan’s video-streaming innovations into a practical solution.

Product Outcome

Mediphan has developed and commercialized two tools for terrestrial telemedical use.

DistanceDoc, an external video frame grabber, makes use of Epiphan’s video graphics array (VGA) capture technology to take diagnostic-quality and Digital Imaging and Communications in Medicine (DICOM) standard stills or video from the ultrasound monitor (or any other medical device with a video display, such as an electrocardiogram or ventilator). It then allows the ultrasound operator to transmit the images securely over the Internet in real time and at near-original resolution. The second tool, MedRecorder, is a similar device that captures diagnostic-quality and DICOM imaging, then stores and archives it for later reference, like an external hard drive.

Mediphan’s MedRecorder and DistanceDoc devices enable the remote ultrasound techniques developed for space to be employed on Earth. By capturing, transmitting, and storing diagnostic-quality ultrasound imagery and video, the devices allow doctors to diagnose injuries and other conditions while not in the same room, building, or even hemisphere as their patients.
Each device plugs into the VGA port of any standard ultrasound machine and then connects to a computer by a universal serial bus (USB) 2.0. A non-physician can, with minimal technical know-how, install Mediphan’s technology and use it to send medical imaging for consultation with experts. Coupled with the highly portable General Electric LOGIQ laptop ultrasound machine and the NASA-developed OPE instructional software now modified for broader use, even the medically inexperienced can consult with distant doctors to diagnose medical issues when and where they occur.

“Immediacy in point of care is essential,” says Dulchavsky. “We can now have non-skilled individuals onsite doing what traditionally only highly skilled individuals are able to do.”

The applications of remote ultrasound diagnostic capabilities are widespread and increasing. The major professional sports teams in Detroit are all using the ultrasound procedure, OPE software, and Mediphan devices for immediate locker-room diagnoses of injuries that happen during practice and games. Olympians at the 2006 Winter Olympic Games in Torino, Italy, benefitted from the telemedical procedure, as did athletes at last year’s Summer Olympic Games in Beijing, China. Currently, the procedure is used for day-to-day oversight of Olympians in training facilities across the United States. It also allows trainers to establish baseline evaluations of athletes’ body structures, making for easier recognition of damage due to injury. More than 345 musculoskeletal ultrasound examinations have been performed on Olympians and professional athletes so far, a number of these with remote guidance.

The technology is also helping improve education, allowing a medical student on duty to share diagnostic information with an attending doctor elsewhere. The MedRecorder offers medical students the ability to archive personal portfolios documenting proficiency in diagnostic techniques and provides an affordable way to store and maintain records.

Meanwhile, the United Nations Millennium Project, which has among its goals improved maternal care in underserved areas, plans to use the telemedical procedure in developing countries. Dulchavsky and NASA engineers are currently working to create a highly versatile, environmentally robust device that could serve as a kind of information node connecting patients in remote areas to distant experts via Mediphan technology. Then, Dulchavsky says, “we could utilize the techniques and technologies that we developed for use on the ISS to diagnose a wide variety of medical issues, such as traumatic injury, problematic pregnancies, and certain infectious diseases.”

Last year, working at a distance with a NASA team in the Mars-like environment of Devon Island in northern Canada, Dulchavsky performed the first-ever remote guidance of a simulated appendectomy. One day, the same technique may be used to do the real thing in a village in Madagascar, on the slope of Everest, or on Mars itself.

DistanceDoc™ and MedRecorder™ are trademarks of Mediphan. LOGIQ® is a registered trademark of General Electric Company.

« Start Prev 1 2 Next End»

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.