NASA Spinoff

NASA Technology

In the winter of 2009, Washington, DC, workers faced the prospect of a difficult commute due to record-setting snowfalls. But thousands of the city’s Metrorail riders found the public transportation system fully functional, thanks in part to a NASA technology invented years before.

NASA Technology

Successfully building, flying, and maintaining the space shuttles was an immensely complex job that required a high level of detailed, precise engineering. After each shuttle landed, it entered a maintenance, repair, and overhaul (MRO) phase. Each system was thoroughly checked and tested, and worn or damaged parts replaced, before the shuttle was rolled out for its next mission.

NASA Technology

The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher.

NASA Technology

For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or “good goo,” as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle.

NASA Technology

Helicopters present many advantages over fixed-wing aircraft: they can take off from and land in tight spots, they can move in any direction with relative ease, and they can hover in one area for extended periods of time. But that maneuverability comes with costs.

NASA Technology

After 10 months of traveling through deep space to Mars, the Phoenix Lander finally approached its destination. The last 7 minutes of the spacecraft’s 423 million-mile-journey—the entry, descent, and landing (EDL) phase—were the most critical and also the most difficult. In the history of Mars landing missions, only 5 of 13 attempts have succeeded. It would have been tragic for Phoenix to go so far yet fail to arrive safely.

NASA Technology

As NASA designs new spacecraft for its science missions and begins designs for the next generation of human spaceflight vehicles, it also works to revolutionize Earth’s airspace with safer, more efficient air vehicles. Throughout its research and development activities, NASA employs the best design tools available.

NASA Technology

Heinz Erzberger never thought the sky was falling, but he knew it could benefit from enhanced traffic control. Throughout the 1990s, Erzberger led a team at Ames Research Center to develop a suite of automated tools to reduce restrictions and improve the efficiency of air traffic control operations. Called CTAS, or Center-TRACON (Terminal Radar Approach Control) Automation System, the software won NASA’s Software of the Year award in 1998, and one of the tools in the suite—the traffic management advisor—was adopted by the Federal Aviation Administration and implemented at traffic control centers across the United States. Another one of the tools, Direct-To, has followed a different path.

NASA Technology

“Flutter” may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition.

NASA Technology

In 1961, not long after NASA received the imperative from President John F. Kennedy to land a man on the Moon within the decade, then-NASA administrator James Webb posed a question to Charles Stark “Doc” Draper, head of the Massachusetts Institute of Technology (MIT) Instrumentation Lab. Webb wanted to know if it was possible to create a guidance system that could lead a man to the Moon and return him safely to Earth.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.