NASA Spinoff

Rocket-Powered Parachutes Rescue Entire Planes

When Boris Popov was 8 years old, he took one of his mother’s sheets and some thread, made a parachute, climbed a tree, and jumped. The homemade chute did little to break Popov’s fall; his father took the disappointed boy aside and said, “Son, you’ve got to start higher.”

altYears later in the mid-1970s, recent college graduate Popov was hang gliding over a lake when the boat that was towing him accelerated too quickly, ripping the control bar from his hands. Some 500 feet in the air, Popov’s glider went into a spiral, coming apart as Popov plummeted to the water. As he fell, Popov realized that if he only had some kind of parachute, he could have been saved. Before impact, he promised himself that, if he survived, he would create a solution that would save people in these types of emergency situations.

“BRS is
a classic
example of
taxpayers’ money being spent
on research
that has
translated into
246 lives saved.”

Decades later, the U.S. air transportation system was suffering its own kind of free fall. The terrorist attacks of 9/11 led to stringent security measures that complicated and slowed down air travel. Even as the industry recovered from the effects of the attacks, increased flights and passenger demand strained the National Airspace System (NAS) at levels never before experienced. At the same time, NASA was exploring ways of extending aviation to rural America using smaller general aviation (GA) aircraft and local community airports. The NASA Small Aircraft Transportation System (SATS) project envisioned an on-demand, point-to-point, widely distributed transportation system relying on small aircraft (4-10 passengers) operating out of the Nation’s more than 5,400 public-use landing facilities. With about 98 percent of the population living within 20 miles of at least one such airport, SATS could provide cheaper, faster, and more practical options for business and leisure travel, medical services, and package delivery.

Though the SATS project concluded its research in 2006, the pursuit of a nationwide GA transportation system continues through other initiatives like NASA’s Green Flight Centennial Challenge, scheduled for 2011, which encourages competing teams to maximize fuel efficiency for personal aircraft, as well as reduce noise and improve safety. Technological advances are still necessary, however, to make such a system viable, such as improving the safety of small aircraft. One solution has come in the form of an invention developed by Popov, who having survived his fall, began investigating methods of ballistically deploying parachutes for aircraft in emergency situations. Today, with the help of a NASA partnership, the parachute that Popov wished for when plunging to Earth is saving hundreds of small aircraft pilots from a similar fate.

Partnership

Popov founded Ballistic Recovery Systems Inc. (now BRS Aerospace) of Saint Paul, Minnesota, in 1980. He formed the company to commercialize his solution to personal aircraft accidents like the one he experienced: a whole aircraft parachute recovery system. Soon BRS was developing parachutes for hang gliders, ultralights, and experimental aircraft, and the company received Federal Aviation Administration certification for a retrofit system for the Cessna 150 GA airplane. The company’s innovative safety solution for small aircraft led to Small Business Innovation Research (SBIR) contracts with Langley Research Center aimed at advancing the BRS parachute system for use with larger and heavier GA aircraft. The NASA funding helped BRS with the development of thin-film parachutes, continuous reinforcement manufacturing methods that result in stronger parachutes, and smart deployment devices—all of which help overcome one of the main obstacles to whole-aircraft parachute systems for larger vehicles: reducing bulk and weight while maintaining parachute strength.

“You can’t have a 50-gallon drum full of parachute in the back of a Cessna. It’s not going to work,” Popov says. Just as important as the research and development funding for BRS, he says, was NASA’s support of its parachute system.