NASA Spinoff

“When you hold a piece of silica aerogel, it feels otherworldly. If you drop it on a table top, it has an acoustic ring to it. It sounds like a crystal glass hitting the table,” describes George Gould, the director of research and development at Aspen Aerogels Inc.

Similar in chemical structure to glass, aerogels have gas or air in their pores instead of liquid. Developed in the United States nearly 80 years ago by a man named Samuel Stephens Kistler, an aerogel is an open-celled material that is typically comprised of more than 95 percent air. With individual pores less than 1/10,000th the diameter of a human hair, or just a few nanometers, the nanoporous nature of aerogel is what gives it the lowest thermal conductivity of any known solid.

The remarkable characteristics of silica aerogel—low density, light weight, and unmatched insulating capability—attracted NASA for cryogenic insulation for space shuttle and space exploration mission applications. For example, when a shuttle is fueled, it requires more than half a million gallons of cryogenic liquid oxygen and liquid hydrogen. To remain a liquid, hydrogen must stay at a cold -253 °C and liquid oxygen must remain at -183 °C. The systems necessary to deliver, store, and transfer these cryogenic liquids call for high-performance insulation technology at all steps along the way and into space.

Crayons placed on top of a piece of silica aerogel will not melt from the heat of a flame. Certain types of aerogel provide 39 times more insulation than fiberglass.
In 1992, NASA started to pursue the development of a practical form of aerogel. Up until that point, aerogel had always been too fragile to handle in its monolithic (or solid) form, and too time-consuming and expensive to manufacture. The concept for a flexible aerogel material was introduced by James Fesmire, the senior principal investigator of the Cryogenics Test Laboratory at Kennedy Space Center. Fesmire, at that time a mechanical engineer responsible for cryogenic fueling systems design, envisioned an aerogel composite material that would be practical to use, but would still exploit the phenomenal heat-flow-stopping capability provided by the nanoporous aerogel.


Aerogel is made from a wet gel that is dried. The substance has been described as feeling like volcanic glass pumice; a very fine, dry sponge; and extremely lightweight Styrofoam.
Kennedy Space Center awarded Aspen Systems Inc., a research and development firm in Marlborough, Massachusetts, a Small Business Innovation Research (SBIR) contract to create a flexible, durable, easy-to-use form of aerogel. The world’s first aerogel composite blankets were produced in 1993 as cookie-sized laboratory specimens. Initial testing under cryogenic conditions showed the material to have exceptionally good insulating performance in ambient pressure environments. At that time, standard laboratory test machines were inadequate to fully characterize the material’s very low heat transfer characteristics under cryogenic conditions. A second phase of the SBIR program, a collaborative effort with Kennedy, was awarded in 1994. As part of that collaboration, a cryostat insulation test apparatus was devised for measuring the true thermal performance of the aerogel blankets. This apparatus, Cryostat-1, was able to fully test the material and later became the cornerstone capability for the laboratory at Kennedy.

« Start Prev 1 2 3 Next End»

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.