NASA Spinoff

“When you hold a piece of silica aerogel, it feels otherworldly. If you drop it on a table top, it has an acoustic ring to it. It sounds like a crystal glass hitting the table,” describes George Gould, the director of research and development at Aspen Aerogels Inc.

Similar in chemical structure to glass, aerogels have gas or air in their pores instead of liquid. Developed in the United States nearly 80 years ago by a man named Samuel Stephens Kistler, an aerogel is an open-celled material that is typically comprised of more than 95 percent air. With individual pores less than 1/10,000th the diameter of a human hair, or just a few nanometers, the nanoporous nature of aerogel is what gives it the lowest thermal conductivity of any known solid.

The remarkable characteristics of silica aerogel—low density, light weight, and unmatched insulating capability—attracted NASA for cryogenic insulation for space shuttle and space exploration mission applications. For example, when a shuttle is fueled, it requires more than half a million gallons of cryogenic liquid oxygen and liquid hydrogen. To remain a liquid, hydrogen must stay at a cold -253 °C and liquid oxygen must remain at -183 °C. The systems necessary to deliver, store, and transfer these cryogenic liquids call for high-performance insulation technology at all steps along the way and into space.

Living in space long term will require a sustainable environment. Plants provide fresh food, clean air, and clean water that will assist this effort, but plants need light to grow, and light requires energy. Here on Earth, most plants get this light from the obvious abundant source, the Sun. The Sun’s solar radiation is ideal for growing plants here on Earth, but it presents some problems for plant growth in space. For starters, the lengths of the days are different depending upon the location of the garden. For growing plants on spacecraft, this problem is compounded, as the vehicle position is constantly changing and is usually not positioned for optimal plant growth. Thus, NASA has been developing methods for growing crops in space using artificial light sources.

NASA Technology

On March 29, 2011, NASA’s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system’s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA’s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth.

NASA Technology

Even under the most unfortunate circumstances, NASA continues on a path of innovation. After the Space Shuttle Columbia reentered the atmosphere on February 1, 2003, it experienced a catastrophic failure, and the entire crew and vehicle were lost. For the two weeks prior to the accident, Columbia STS-107 was on a mission to perform physical, life, and space sciences research in the unique environment of microgravity.

NASA Technology

Successful space missions can rarely be attributed to a single thing. Rather, they are the result of a system of systems: integrated elements functioning effectively in their individual roles and together with related components, then those systems interacting with and supporting other systems to form a collaborative whole—from the spacecraft itself to the engineering and research teams that design and build it.

NASA Technology

Fast forward to 2035. Imagine being part of a community of astronauts living and working on the Moon. Suddenly, in the middle of just another day in space, a meteorite crashes into the surface of the Moon, threatening life as you know it. The support equipment that provides oxygen for the entire community has been compromised. What would you do?

NASA Technology

Have you ever felt nauseous reading a book in the back seat of a car? Or woken from a deep sleep feeling disoriented, unsure which way is up? Momentary mixups like these happen when the sensory systems that track the body’s orientation in space become confused. (In the case of the backseat bookworm, the conflict arises when the reader’s inner ear, part of the body’s vestibular system, senses the car’s motion while her eyes are fixed on the stationary pages of the book.) Conditions like motion sickness are common on Earth, but they also present a significant challenge to astronauts in space.

NASA Technology

As the International Space Station (ISS) travels 17,500 miles per hour, normal is having a constant sensation of free-falling. Normal is no rain, but an extreme amount of shine—with temperatures reaching 250 ˚F when facing the Sun. Thanks to a number of advanced control systems onboard the ISS, however, the interior of the station remains a cool, comfortable, normal environment where astronauts can live and work for extended periods of time.

Originating Technology/NASA Contribution

One of the forces that propels scientific and cultural advancement is exploration. The mission of NASA is to pioneer the future of space exploration, scientific discovery, and aeronautics research. Through this mission, NASA leads the Nation in pushing the boundaries of exploration and discovering new frontiers, and, as a secondary benefit, pushing scientific and cultural advancement.

Originating Technology/NASA Contribution

Sport fishing is an uncertain pastime. Some days the fish are biting; others, not. But for captains of charter fishing boats and recreational fishermen making the most of a day off from work, returning without a catch is more than just a disappointment—it can have a financial impact as well, from wasted gas to frustrated clients taking their business elsewhere. Thanks to an evolving commercial partnership, oceanic data gathered by NASA satellites is now helping take the guesswork out of finding fishing hotspots.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.