NASA Spinoff


While working with NASA on contaminant control technology, Precision Combustion Inc. advanced its Microlith technology and then incorporated it into products such as the Regenerable Microlith Adsorber, seen here.
Tony Anderson, the marketing and business development manager at PCI, says the SBIR work with NASA has been paramount to enhancing Microlith technology. “The interaction between PCI and NASA has been ongoing for almost 20 years now. On the catalytic oxidizer project, it has been invaluable to have the collaboration to ensure the success. Now we are using the technology as a springboard for other products.”

Due to the company’s commercial success spanning more than a decade, it has received the “Tibbetts Award” twice—in 1998 and in 2006—in recognition for exemplifying the types of business, economic, and technical development goals of the SBIR program. PCI also received the “Army SBIR Achievement Award” in 2008 and 2010 for applications of its Microlith technology for military applications. The U.S. Army conducts its annual awards program to recognize efforts that exemplify the SBIR goal of bringing innovative technologies and products to the marketplace.

Today, PCI develops, manufactures, and markets catalytic devices for clean and efficient combustion, emissions controls, and chemical manufacturing applications. As one of the company’s core technologies, the Microlith substrate can be coated with a variety of materials utilizing proprietary methods from PCI, including catalyst or adsorbent materials, to promote chemical reactions and to remove environmental contaminants.“Microlith substrate is a platform technology. With that, there are many different things we can do with it. A lot of the NASA support helps us to make the platform sturdy,” says Subir Roychoudhury, director of Microlith Products at PCI.

In particular, the NASA-supported research has demonstrated that a certain coating on Microlith metal mesh elements can effectively adsorb a number of contaminants. Another benefit is that the technology is more compact and lightweight than the competing technology. Lastly, the Microlith substrate can be customized to target individual contaminants, and can also be integrated into existing systems.

Soon after working with Marshall, the National Science Foundation started funding PCI to do fuel reforming and processing incorporating Microlith technology. That led to additional fuel reforming work with the Department of Defense, which encompasses a large portion of PCI’s business today.

Roychoudhury explains how the Microlith reactor is being used for efficient hydrogen sulfide removal in fuel reforming for fuel cell systems. “The work with fuel reforming and fuel processing takes hydrocarbon materials and runs them through a catalyst that is supported on the Microlith. It converts hydrocarbon to syngas, which can operate fuel cells. Utilizing the same Microlith technology that we developed through NASA, we make fuel for fuel cells.”

Microlith technology is also being incorporated into development efforts for fuel reforming on ships for the U.S. Navy, mobile applications for the Army, and fuel processing for fuel cells for U.S. Air Force aircraft, as well as several civilian applications.

« Start Prev 1 2 Next End»

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.