NASA Spinoff

Imagine you are about to be dropped in the middle of a remote, inhospitable region—say the Kalahari Desert. What would you want to have with you on your journey back to civilization? Food and water, of course, but you can only carry so much. A truck would help, but what would you do when it runs out of gas? Any useful resources would have to be portable and— ideally—sustainable.

NASA not only peers up to gather information about space; it also peers down to gather information about Earth. As part of the Science Mission Directorate, NASA’s Earth Science Program aims to improve predictions about climate, weather, and natural hazards by understanding Earth’s response to natural and human-induced changes. One way scientists are tracking these changes is by monitoring the Earth’s soil moisture and ocean salinity.

If you are planning a day at your local park or even a weekend camping trip, you would simply pack all the food, drink, and supplies you need. Similarly, astronauts on short-term space missions can get away with packing the provisions they need to survive in space. But long-term space travel — a round-trip journey to Mars, for example — is no picnic. Depending on the mission, astronauts would need enough food to last for several months or years; a means to clean the air and water; and some efficient way of dealing with waste. Given cost and space limitations, packing supplies on this scale may not be feasible, meaning astronauts need a system that provides a steady source of sustenance while at the same time purifying and recycling waste. The best solution, then, for future deep space explorers: Develop a green thumb.

alt

NASA Technology

“Who has more satellite data than NASA?” asks Patrick Hogan.

The question is a rhetorical one. After dozens of Earth-observing satellite launches and missions to other planets, NASA has accumulated an unmatched amount of planetary science information, including satellite imagery, terrain information, and climate data. To visualize this data and make it accessible, in 2002 Hogan and his colleagues at Ames Research Center started building a software program called World Wind.

NASA Technology

In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory’s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen.

NASA Technology

All research and development has a story behind it, says Jacqueline Quinn, environmental engineer at Kennedy Space Center. For Quinn, one such story begins with the Saturn 1B launch stand at Kennedy and ends with a unique solution to a challenging environmental problem.

NASA Technology

Signals from global positioning system (GPS) satellites are now being used for more than just location and navigation information. By looking at the radio waves from GPS satellites, a technology developed at NASA’s Jet Propulsion Laboratory (JPL) not only precisely calculates its position, but can also use a technique known as radio occultation to help scientists study the Earth’s atmosphere and gravity field to improve weather forecasts, monitor climate change, and enhance space weather research.

NASA Technology

NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand—the solar cell.

NASA Technology

Resourcefulness is a key quality for living in space, and on the International Space Station (ISS), that means making the most of water supplies. In 2008, the installation of the Water Processing Assembly (WPA) onboard the ISS allowed the space station’s crew to do just that. The WPA purifies moisture from nearly every possible source—sweat, water vapor, wastewater, and even urine—for drinking and oxygen generation. Capable of producing 35 gallons of potable, recycled water a day, the system has reduced the need for water delivered to the ISS by over 1,000 gallons a year, saving significant payload costs in the process.

NASA Technology

“A spacecraft is the ultimate tight building. We don’t want any leaks, and there is very little fresh air coming in,” says Jay Perry, an aerospace engineer at Marshall Space Flight Center. “As a result, there is a huge potential for a buildup of contaminants from a host of sources.”

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.