NASA Spinoff

A “revolution in remote sensing” took place in the mid-1980s, when Dr. Alexander F.H. Goetz and his colleagues at the Jet Propulsion Laboratory developed a powerful instrument called AVIRIS (Airborne Visible InfraRed Imaging Spectrometer), according to Dr. Nicholas Short, author of NASA’s online Remote Sensing Tutorial. AVIRIS extended the capabilities of ground-based spectrometers, enabling the spectrum-detecting instruments to be used in the air on moving platforms.

Funded and administered by NASA, the Affiliated Research Center (ARC) program transfers geospatial technologies from the Space Agency and participating universities to commercial companies, non-profit and trade organizations, and tribal governments. The origins of the ARC program date back to 1988, when NASA's Stennis Space Center initiated the Visiting Investigator Program to bring industry closer to spatial information technologies. The success of this trial program led to an expansion into the ARC program, whose goal is to enhance competitiveness of U.S. industries through more efficient use of remote sensing and related technologies.

In order to deliver accurate geospatial data and imagery to the remote sensing community, NASA is constantly developing new image-processing algorithms while refining existing ones for technical improvement. For 8 years, the NASA Regional Applications Center at Florida International University has served as a test bed for implementing and validating many of these algorithms, helping the Space Program to fulfill its strategic and educational goals in the area of remote sensing. The algorithms in return have helped the NASA Regional Applications Center develop comprehensive semantic database systems for data management, as well as new tools for disseminating geospatial information via the Internet.

The Robot Systems Technology Branch at NASA's Johnson Space Center collaborated with the Defense Advanced Research Projects Agency to design Robonaut , a humanoid robot developed to assist astronauts with Extra Vehicular Activities (EVA) such as space structure assembly and repair operations. By working side-by-side with astronauts or going where risks are too great for people, Robonaut is expected to expand the Space Agency's ability for construction and discovery.

Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center's Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST's experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

Forty years ago, actuators requiring constant energy to help power the Apollo spacecraft in space were replaced by magnetically holding and releasing, electronically controlled valves. Today, these same magnetic, electronic valves are on the verge of replacing entire camshaft systems in cars and trucks on Earth, thus leading to a whole new generation of low-emission engines.

Scientists interested in exploring the intricacies and dynamics of Earth's climate and ecosystems continually need smaller, lighter instrumentation that can be placed onboard various sensing platforms, such as Unmanned Aerial Vehicles (UAVs). Responding to a need for improved data collection for remote atmospheric measurement systems, ASRC Aerospace Corporation , of Greenbelt, Maryland, developed a series of low-power, highly integrated, multi-channel scaler (MCS) cards. The cards were designed to meet the needs of NASA's ground-based and airborne Light Detection and Ranging (LIDAR) photon-counting programs. They can rapidly collect thousands of data points during a continuous scan of the atmosphere.

In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft's water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water.

Fresh fruits and vegetables have been in demand by orbiting astronauts since the early days of the Space Shuttle. As one can imagine, however, oranges, onions, tomatoes, garlic, and other fresh items can provide a cornucopia of smells in a closed environment such as the Space Shuttle or the International Space Station (ISS), especially when they begin to perish. It does not help that they are loaded onto the Space Shuttle up to 24 hours in advance of a launch, and that the on-orbit shelf life is just 2 to 3 days for most, due to a lack of refrigeration.

The Thermo-Mechanical Systems Branch at NASA's Glenn Research Center is responsible for planning and conducting research efforts to advance thermal systems for space, aerospace, and non-aerospace applications. Technological areas pertain to solar and thermal energy conversion. For example, thermo-mechanical systems researchers work with gas (Stirling) and liquid/vapor (Rankine) systems that convert thermal energy to electrical power, as well as solar dynamic power systems that concentrate sunlight to electrical power.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.