NASA Spinoff
Thanks to the NASA SBIR, the company is now using the resulting computer modeling technology to predict how materials like ceramics, metals, and glass behave with microwave heat. The new capability is like having an extra tool, says Allan. “We can do the experimental work, and we can also model what we are doing. That’s an ability for us that we didn’t really have before the NASA project.”

Through an SBIR with Kennedy Space Center, Ceralink Inc. demonstrated a microwave system that could heat lunar soil enough to solidify it. The images above show simulated lunar soil before, during, and after Ceralink’s microwave heating. As a result of the SBIR, Ceralink refined a computer modeling program that is now offered as part of Ceralink’s commercial services.
The program allows Ceralink to take what is learned from a process developed in the lab for a small microwave furnace and apply the information to simulate how the same process would work in a much larger furnace. The company simply inputs the material properties, and the model runs the specific configuration, including the amount of microwave power that would be required on a larger level. “It makes us better prepared to help our customers scale up microwave heating for manufacturing,” says Allan.

Ceralink is currently using the NASA-enhanced program for a U.S. Department of Energy project to design and test microwave technology for cracking hydrocarbons like ethane and turning it into ethylene for making plastics like polyethylene and polyester. “The process takes long chains of hydrocarbons and breaks them down to make other things like ethylene gas. A microwave is being used to crack it down as an energy-saving method,” says Shulman.

The model has applicability for other Ceralink customers as well. For example, the company recently built a system for making specialty carbon foam for composites tooling for aircraft, spacecraft, and automobiles. The process required the materials to be heated to over 1,800 ˚F, and with conventional heating methods, it took 1 week to fire the material. With a small system developed in Ceralink’s lab, the firing was complete in less than a day. Together with other companies, Ceralink built a successful larger system, but, as Allan says, “If we had the modeling tool at the time, it would have helped to simplify the design and building of the system.”

Allan also envisions use for the modeling program for tape cast machine applications, which move materials on a belt through a microwave; for alumina substrates for electronics and computers; zirconia for solid oxide fuel cells; and other electronics ceramic materials that go into capacitors and resistors, fuel cell materials, and battery materials.

As the new tool impacts Ceralink’s current innovations, it has the potential to impact NASA’s future developments. In 2011, the company began working on an SBIR to apply microwave technology for curing epoxy composites for aircraft, helicopters, and spacecraft. “We are currently developing it in our lab on a small scale, but I’m optimistic,” says Allan. “If we proceed in the development, the model will be very helpful.”

« Start Prev 1 2 Next End»

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.