NASA Spinoff

In June 2006, NASA scientists used extensive data transmitted from the Chandra X-ray Observatory deep space telescope to prove that up to 25 percent of the light illuminating the universe comes from the “massive crush of matter succumbing to the extreme gravity of black holes.”

In President Ronald Reagan’s 1984 State of the Union address, he announced plans for a U.S. space station, the equivalent of the Russian space station, Mir. This announcement set off a flurry of congressional funding debates, and it was not until 1988 that the President announced that a consensus had been reached and the project would go forward. The project was named “Space Station Freedom.”

All objects reflect a certain amount of energy, even if it is just the electromagnetic energy created by the movement of electrically charged molecules. Measurements of these reflected energies, called spectra, can be used to create images of observed items and can thus serve to identify objects and substances. To create a spectral image, the intensity of the energy an object is reflecting is measured at different wavelengths, and then these measurements are assigned colors.

On October 14, 1947, Captain Charles “Chuck” Yeager made history when he became the first pilot in an officially documented flight to ever break the sound barrier. Flying a Bell XS-1 test jet over the Mohave Desert, Yeager hit approximately 700 miles per hour, when a loud boom thundered across the barren landscape as he crossed from subsonic to supersonic speeds. The sonic boom, akin to the wake of the plane’s shockwaves in the air, occurred at Mach 1—the speed of sound (named after Ernst Mach, an Austrian physicist whose work focused on the Doppler effect and acoustics).

Glenn Research Center’s Mechanical Components Branch routinely conducts research on transmissions and gearing for advanced gas turbines, promoting their safety, weight reduction, and reliability. The Mechanical Components Branch is staffed by both NASA and U.S. Army Research Laboratory employees, and the research program is designed and executed to meet the needs of both organizations. The researchers have developed a world-class set of instruments and test devices, including a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter mainrotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. These are just a few examples of the highly specialized equipment the researchers at the Mechanical Components Branch have at their disposal.

Ice accumulation is a serious safety hazard for aircraft. The presence of ice on airplane surfaces prevents the even flow of air, which increases drag and reduces lift. Ice on wings is especially dangerous during takeoff, when a sheet of ice the thickness of a compact disc can reduce lift by 25 percent or more. Ice accumulated on the tail of an aircraft (a spot often out of the pilot’s sight) can throw off a plane’s balance and force the craft to pitch downward, a phenomenon known as a tail stall.

Nanotubes are sheets of graphite, one atom thick, rolled into seamless cylinders, with an exterior diameter in the range of nanometers. For a sense of perspective, if you were to split a human hair into 50,000 independent strands, a nanotube would be about the size of one of those strands.

Developed at NASA’s Langley Research Center, the Macro-Fiber Composite (MFC) is an innovative, low-cost piezoelectric device designed for controlling vibration, noise, and deflections in composite structural beams and panels. It was created for use on helicopter blades and airplane wings as well as for the shaping of aerospace structures at NASA.

When NASA programs need the ultimate reliability to power deep space probes, they repeatedly select thermoelectric (TE) devices as a system component. TE devices heat, cool, and generate electricity when a temperature differential is provided between the two module faces. Using radioactive isotope Plutonium 238 and TE devices to convert waste heat into electricity, NASA has depended on radioisotope thermoelectric generators (RTGs) in 25 U.S. missions since 1961.

KeyMaster Technologies, Inc., develops and markets specialized, hand-held X-ray fluorescence (XRF) instruments and unique tagging technology used to identify and authenticate materials or processes. NASA first met with this Kennewick, Washington-based company as the Agency began seeking companies to develop a hand-held instrument that would detect data matrix symbols on parts covered by paint and other coatings. Since the Federal Aviation Administration was also searching for methods to detect and eliminate the use of unapproved parts, it recommended that NASA and KeyMaster work together to develop a technology that would benefit both agencies.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.