NASA Spinoff

The Mobile Launcher Platform at NASA’s Kennedy Space Center is a two-story steel structure that provides a transportable launch base for the space shuttle. The main body of the platform is 160 feet long, 135 feet wide, and 25 feet high. When completely unloaded, the platform weighs about 8 million pounds. When it is carrying the weight of an unfueled space shuttle, it weighs about 11 million pounds.

The heat generated by wind resistance and engine exhaust during the launch of a space shuttle is potentially damaging to the casings on the solid rocket boosters, which provide over two-thirds of the initial thrust needed to propel the spacecraft into orbit. To protect this important equipment, in the 1980s, engineers at Marshall Space Flight Center developed a spray-on insulating process that was applied to the boosters’ forward assembly, systems tunnel covers, and aft skirt. The process involved mixing nine chemicals into an adhesive, and then, acting quickly during a 5-hour window, applying the material. The materials were costly, and if the application was interrupted or not completed within the 5-hour window, the batch was lost. In addition to this drawback, the strength of the material was difficult to regulate, so it often chipped off during flight and splashdown, when the reusable boosters are dropped into the sea. Adding to the downside, two of the nine ingredients were harmful to the environment.

During the Mercury missions, astronauts ate terrible food: freeze- dried powders and semi-liquids in aluminum tubes. Decades later, though, astronauts now have meals prepared by celebrity chefs and access to everyday items like shrimp cocktail, stir-fried chicken, and fettuccine alfredo. While the culinary selection has improved, the developers of these gourmet delights are still faced with a number of challenges.

Earth from space—swirling wisps of white against a backdrop of deep azure, punctuated with brown and green swatches of land, all etched on one orb surrounded by black space, floating, seemingly isolated, but teeming with humanity and other forms of life. It is an iconic image, first captured November 10, 1967, by the Applications Technology Satellite (ATS)-3, an unmanned craft conducting payload experiments and examining the space environment. Since then, astronauts and spacecraft have sent back hundreds of pictures of Earth, and each one has had the same breathtaking effect.

Short wavelength solar radiation in the space environment just outside of the Earth’s atmosphere produces atomic oxygen. This gas reacts with spacecraft polymers, causing gradual oxidative thinning of the protective layers of orbiting objects, like satellites and the International Space Station, which maintain low-Earth orbit directly in the area where the corrosive gas is most present.

An educational software product designed by the Educational Technology Team at Ames Research Center is bringing actual aeronautical work performed by NASA engineers to the public in an interactive format for the very first time, in order to introduce future generations of engineers to the fundamentals of flight.

In today's fast-paced business world, there is often more information available to researchers than there is time to search through it. Data mining has become the answer to finding the proverbial needle in a haystack, as companies must be able to quickly locate specific pieces of information from large collections of data. Perilog , a suite of data-mining tools, searches for hidden patterns in large databases to determine previously unrecognized relationships. By retrieving and organizing contextually relevant data from any sequence of terms from genetic data to musical notes the software can intelligently compile information about desired topics from databases.

In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century.

Over 40 years ago, NASA developed Radiant Barrier technology to protect astronauts in the Apollo Program from temperatures that ranged from 250 °F above to 400 °F below zero Fahrenheit. This feat in temperature control technology enabled the astronauts to work inside the Apollo Command Module wearing short-sleeve shirts, with temperatures similar to those of a regular business office. The Radiant Barrier has been applied to virtually all spacecraft since then, including unmanned spacecraft with delicate instruments that need protection from temperature extremes. It is also applied to the astronauts space suits, protecting them during space walks.

Commonly referred to as artificial muscles, electroactive polymer (EAP) materials are lightweight strips of highly flexible plastic that bend or stretch when subjected to electric voltage. EAP materials may prove to be a substitution for conventional actuation components such as motors and gears. Since the materials behave similarly to biological muscles, this emerging technology has the potential to develop improved prosthetics and biologically-inspired robots, and may even one day replace damaged human muscles. The practical application of artificial muscles provides a challenge, however, since the material requires improved effectiveness and durability before it can fulfill its potenti


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.