NASA Spinoff

Astronauts cannot live on dehydrated ice cream alone. Like everyone else, they need their vegetables. Enter VEGGIE, the Deployable Vegetable System, currently under development by Orbital Technologies Corporation (ORBITEC). VEGGIE is the latest in a long line of vegetable production units ORBITEC is currently working on, with NASA assistance, to grow salad crops to supplement prepackaged foods during long stays in space.

Since its dawning days, NASA has been at the forefront of developing and improving materials for aerospace applications. In particular, NASA requires dramatic advancements in material properties to enhance the performance, robustness, and reliability of its launch vehicles, spacecraft, and the International Space Station. Such advancements over the years include noise-abatement materials, fire-resistant fibers, heat-absorbing insulation, and light-but-strong moldable composites.

It is well past quitting time, but you are still stuck in the office. Your spouse left work over an hour ago, but is caught in bumper-to-bumper traffic. As a result, neither of you were available to pick up your daughter on time from her soccer game. If your son hadn't gotten detention at school today which also made him late for work he could have picked her up.

Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens.

NASA has long been known for having developed the thin, shiny reflective material used to insulate everything from the Hubble Space Telescope to hikers, from the Mars rovers to marathon runners, from computers to campers, from satellites to sun shields, and from rockets to residences. It is one of the simplest, yet most versatile spinoffs to come out of the Agency.

When the Mars Reconnaissance Orbiter (MRO) entered the Red Planet's atmosphere in March 2006, it joined the ranks of other noble explorers studying the planet over the past 2,000-plus years. This new NASA orbiter will study the Martian atmosphere and surface, and probe underground in search of past and present water, making it one of the most advanced studies of the planet to date. People have been aware of the existence of Mars and in awe of its presence for centuries, ever since early humans noticed that it did not shimmer like the surrounding stars.

While fashion styles are known to come and go, a certain 'shade' from the past has proved otherwise.

NASA does things that have never been done before—sending spacecraft to other planets, sending people to the Moon, and exploring the limits of the universe. To accomplish these scientific missions, engineers at work within the Space Agency build machines and equipment that have never been made before—rockets that can send advanced instruments across the solar system, giant telescopes that watch the stars from space, and spacecraft that can keep astronauts safe from the perils of space flight. To do these never-before-done deeds with these never-before-made materials, NASA often needs to start at the basics and create its own textiles and materials. The engineers and materials specialists at the Space Agency are, therefore, among the best in the world.

NASA has always been on the cutting edge of aviation safety research, though many of the technologies the Agency develops also find practical application in ground transportation safety. One of the most prominent examples of this type of technology transfer is the grooved pavement developed by NASA in the early 1970s. While researching runway conditions, NASA scientists discovered that cutting narrow grooves into the surface of runways allowed rainwater to flow off of the tarmac, decreasing the troubles associated with wet, slick runways, including slipping, hydroplaning, poor handling, and reduced braking times.

For over 5 years, people have been living and working in space on the International Space Station (ISS), a state-of-the-art laboratory complex orbiting high above the Earth. Offering a large, sustained microgravity environment that cannot be duplicated on Earth, the ISS furthers humankind’s knowledge of science and how the body functions for extended periods of time in space—all of which will prove vital on long-duration missions to Mars.

Subcategories

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.