NASA Spinoff

Originating Technology/NASA Contribution

You may have heard the phrase “as difficult as walking and chewing gum” as a joking way of referring to something that is not difficult at all. Just walking, however, is not all that simple—physiologically speaking. Even standing upright is an undertaking requiring the complex cooperation of multiple motor and sensory systems including vision, the inner ear, somatosensation (sensation from the skin), and proprioception (the sense of the body’s parts in relation to each other). The compromised performance of any of these elements can lead to a balance disorder, which in some form affects nearly half of Americans at least once in their lifetimes, from the elderly, to those with neurological or vestibular (inner ear) dysfunction, to athletes with musculoskeletal injuries, to astronauts returning from space.

Originating Technology/NASA Contribution

The International Space Station (ISS) is falling. This is no threat to the astronauts onboard, however, because falling is part of the ISS staying in orbit.

Originating Technology/NASA Contribution

On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child’s wagon, NASA’s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner—largely remote controlled by NASA operators on Earth—transmitted photos and data unlike any previously collected.

Originating Technology/NASA Contribution

On Earth, gravity can cause a lot of stress to a person’s bones and muscles, whether the stress is caused by running a marathon or simply climbing a staircase. However, in space, the lack of gravity can also cause problems for astronauts’ bodies. NASA is seeking ways to combat these problems, and the solutions are finding application here on Earth.

Originating Technology/NASA Contribution

In January 2009, birds struck the engines of US Airways Flight 1549 and forced an emergency landing into the Hudson River. Everyone on board survived, and the crew was lauded for remaining calm under pressure and keeping passengers safe. The pilot, Captain Chesley Sullenberger, is a former U.S. Air Force pilot, trained in Crew (or cockpit) Resource Management (CRM) which originated at NASA in 1979. Even before they knew they had an emergency, the crew was using specific training for safe and effective operations: all parts of key NASA CRM methods required by US Airways since 1995.

Originating Technology/NASA Contribution

Beginning in 1985, a team of engineers at the Space Telescope Science Institute in Baltimore began developing software to manage various time-consuming tasks for the Hubble Space Telescope, launched in 1990. In the early phases of development, the complexity of scheduling different tasks became clear when the engineers realized Hubble’s power restrictions.

Originating Technology/NASA Contribution

Astronauts, pilots, air traffic controllers, truck drivers, shift workers, and mountain climbers have something in common: All are at risk for impaired cognitive abilities due to stress or sleep deprivation. Whether in space or on Earth, stress and sleep loss can cause a reduction in certain cognitive abilities, such as working memory, reaction time, and problem solving. Because mission safety and success depend on being able to think clearly and function well, NASA began exploring a small, portable way for astronauts to monitor themselves and their cognitive fitness while in space, especially on future missions to Mars that will require extended periods in stressful environments.

Originating Technology/NASA Contribution

For astronauts returning to Earth, adjusting to full gravity can be just as demanding as any of the challenges they faced in space. While readjusting to Earth’s gravitational pull, astronauts can experience difficulties moving and balancing, headaches, nausea, and even fainting spells.

Originating Technology/NASA Contribution

Since the earliest missions in space, NASA specialists have performed experiments in low gravity. Protein crystal growth, cell and tissue cultures, and separation technologies such as electrophoresis and magnetophoresis have been studied on Apollo 14, Apollo 16, STS-107, and many other missions.

Electrophoresis and magnetophoresis, respectively, are processes that separate substances based on the electrical charge and magnetic field of a molecule or particle. Electrophoresis has been studied on over a dozen space shuttle flights, leading to developments in electrokinetics, which analyzes the effects of electric fields on mass transport (atoms, molecules, and particles) in fluids. Further studies in microgravity will continue to improve these techniques, which researchers use to extract cells for various medical treatments and research.

Partnership
As part of the NASA Shuttle Student Involvement Program, John Vellinger designed an experiment to study the effect of low gravity on chicken embryos. After his freshman year at Purdue University in 1985, Vellinger partnered with KFC Corporation staff engineer, Mark Deuser, who helped Vellinger design the “Chix in Space” experiment for two space shuttle missions. Their work together laid the foundation for creating Space Hardware Optimization Technology Inc. (SHOT) in 1988, after acquiring a NASA contract for space flight hardware development.

Since 1988, four NASA centers—Marshall Space Flight Center, Glenn Research Center, Johnson Space Center, and Ames Research Center—have issued over 25 Small Business Innovation Research (SBIR) contracts to the Greenville, Indiana-based company, which has since changed its name to Techshot Inc. For its first 13 years, Techshot served exclusively as a NASA payload company, specializing in space hardware and later, separation technologies. Techshot engineers designed and integrated hardware for three suborbital rocket flights, seven space shuttle missions, and several payloads for the International Space Station.

Working with the Consortium for Materials Development in Space at the University of Alabama in Huntsville, Techshot won a contract to develop separation technologies for space application. Separation technologies involve the analysis and purification of proteins or “markers” which reveal information about diseases and the body. With the addition of Paul Todd as chief scientist in 2000, Techshot realized the value of terrestrial applications of separation technology, and explored experimental possibilities with Marshall and Johnson.

Product Outcome
Accustomed to working with the exacting requirements for space payloads, Techshot took a logical step in commercializing separation technology for the equally strict medical field, beginning with an organic separator developed for the Organic Separation Experiment that first flew on STS-57. Next, the company developed advanced separators based on the Advanced Space Experiment Processor (ADSEP), operated in low gravity without using a centrifugal field. These technologies provide biphasic, electrophoretic, and magnetic separation capabilities.

During early development of these separators, Techshot found the number of cells collected was insufficient for the needs of the experiment, for example, in stem cell transplants. To remedy this, Techshot purchased the license for a magnetic separation technology from the Cleveland Clinic Foundation, already shown to produce enough cells for a stem cell transplant. The resulting system—Magsort—is a multistage electromagnetic separator for purifying cells and magnetic particles for a variety of research and medical uses, including stem cell research and cancer treatment, in a much more refined manner than previously possible.

A laboratory apparatus for separating particles (especially biological cells), Magsort separates cells based on their magnetic susceptibility and magnetophoretic mobility. Magsort refines a sample population of particles by categorizing multiple portions of the sample and separating substances into individual parts, instead of as entire sets. As Todd explains, “If you have a mixture of cells—A, B, C, and D—Magsort will separate and collect A and B and C and D and put them separately in the hands of a research investigator . . . . Other existing methods would sort out only B, for example.”

The cells of interest might only be present in low numbers, so refined separation techniques are necessary for effective research. In its magnetophoretic process, the Magsort creates magnetic particles that are smaller than the cell but react only to one certain cell type. The hematological stem cells, for example, have molecules on their surface (clusters of differentiation 34) that can react with an antibody and then attach to a magnetic particle. If the mixture is then placed in a magnetic field, only the stem cells will be drawn to the magnet.

Magsort includes an electronic unit coupled to a built-in computer and a processing unit that includes horizontal upper and lower plates, a plate rotation system, a graded series of capture magnets above the upper plate, and a wheel for sequencing the small permanent capture magnets. The bolted plates rotate, and an interface between them acts as a seal for separating fluids. Up to 15 upper cuvette stations allow for fraction collection; a stepping motor drives the rotation system, causing the upper plate to rotate for fractional sample collection. User interface software displays the status of the various components on a small organic light-emitting diode (LED) monitor: the translating electromagnet, capture magnet, and the rotation of the upper plate.

Techshot is currently developing other separation products for the medical field. A Techshot spinoff company, IKOTech LLC, is commercializing a version of the Magsort called the Quadruple Magnetic Sorter; it is used primarily for stem cell processes and cancerresearch and treatment, including the detection of rare cancer cells and the removal of undesired cells from bone marrow transplants. Another model is being developed for type 1 diabetes pancreas islet transplants. Todd explains, “Right now, it takes two or three donor organs to treat one person. Our process greatly increases the yield.” With enough healthy (transplanted) beta cells of their own, patients’ symptoms could vanish.

Techshot credits the success of their separation technologies with their years of experience with NASA, and consider the company itself a spinoff. Rich Boling, vice president of corporate advancement, claims that Techshot’s years of experience in payloads made their commercial separators possible, as their capabilities as a company were “refined in the crucible of human space flight.”

Originating Technology/NASA Contribution

“Dentists,” comedian Bill Cosby memorably mused, “tell you not to pick your teeth with any sharp metal object. Then you sit in their chair, and the first thing they grab is an iron hook!” Conventional periodontal probing is indeed invasive, uncomfortable for the patient, and the results can vary greatly between dentists and even for repeated measurements by the same dentist. It is a necessary procedure, though, as periodontal disease is the most common dental disease, involving the loss of teeth by the gradual destruction of ligaments that hold teeth in their sockets in the jawbone. The disease usually results from an increased concentration of bacteria in the pocket, or sulcus, between the gums and teeth. These bacteria produce acids and other byproducts, which enlarge the sulcus by eroding the gums and the periodontal ligaments.

The sulcus normally has a depth of 1 to 2 millimeters, but in patients with early stages of periodontal disease, it has a depth of 3 to 5 millimeters. By measuring the depth of the sulcus, periodontists can have a good assessment of the disease’s progress. Presently, there are no reliable clinical indicators of periodontal disease activity, and the best available diagnostic aid, periodontal probing, can only measure what has already been lost. A method for detecting small increments of periodontal ligament breakdown would permit earlier diagnosis and intervention with less costly and time-consuming therapy, while overcoming the problems associated with conventional probing.

The painful, conventional method for probing may be destined for the archives of dental history, thanks to the development of ultrasound probing technologies. The roots of ultrasound probes are in an ultrasound-based time-of-flight technique routinely used to measure material thickness and length in the Nondestructive Evaluation Sciences Laboratory at Langley Research Center. The primary applications of that technology have been for corrosion detection and bolt tension measurements (Spinoff 2005). This ultrasound measurement system was adapted to the Periodontal Structures Mapping System, invented at Langley by John A. Companion, under the supervision of Dr. Joseph S. Heyman. Support of the research and development that led to this invention was provided by NASA’s Technology Applications Engineering Program and by the Naval Institute for Dental and Biomedical Research, in Great Lakes, Illinois. In fact, a request from the U.S. Navy spurred the development of the tool: A sailor on a submarine had to be airlifted 1 month into a 6-month tour due to a life threatening case of periodontal disease, costing the Navy millions of dollars as the mission had to be abandoned.

Partnership
Patented as the Ultrasonagraphic Probe (USProbe) in May 1998, Visual Programs Inc., of Richmond, Virginia, obtained an exclusive license for the system in January 2000. According to John Senn, of Visual Programs, the new device may be one of the major steps forward in the battle against periodontal disease. “The probe should be the next major piece of dental equipment. By using the new technology, dentists and hygienists will be able to perform exams earlier and may detect periodontal disease while the teeth can still be saved.” According to Jack Singer, the president of Visual Programs, “The name NASA has opened many doors for us that may not have been opened otherwise. It gives credibility to a new concept that otherwise might not have been accepted.”

Product Outcome
The USProbe mapping system is a noninvasive tool to make and record differential measurements of a patient’s periodontal ligaments relative to a fixed point, the boundary between the crown and root of a tooth, called the cemento-enamel junction (CEJ). The mapping system uses ultrasound to detect the top of the ligaments at various points around each tooth, and uses either ultrasound or an optical method to find the CEJ at the same points. The depth of the sulcus is calculated as the difference between these two points.

The probe used in the mouth to send and receive ultrasound signals is very small, and additional instrumentation is contained within a standard personal computer, allowing the entire measurement to be computerized. In addition, manual charting of pocket depth will be eliminated, since the data will be automatically transmitted to the computer. In addition to solving the problems associated with conventional probing, the USProbe may also provide information on the condition of the gum tissue and the quality and extent of the bond to the tooth surface.

Visual Programs developed the USProbe as the next-generation, state-of-the-art diagnostic tool for detecting and characterizing periodontal disease. The USProbe automatically detects, maps, and diagnoses problem areas by integrating diagnostic medical ultrasound techniques with advanced artificial intelligence. Visual Programs expects it will quickly become the industry standard technique, replacing the current uncomfortable and invasive techniques. NASA and Visual Programs are proud to contribute technology that will increase the number of healthy smiles and decrease the number of grimaces produced by their maintenance.

Subcategories

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.