NASA Spinoff

Custom Machines Advance Composite Manufacturing

NASA Technology Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all

Read more...

Polyimide Foams Offer Superior Insulation

NASA Technology At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and

Read more...

Beam Steering Devices Reduce Payload Weight

NASA Technology Scientists have long been able to shift the direction of a laser beam, steering it toward a target, but often the strength and focus of the light is altered. For precision applications, where the quality of the beam cannot be compromised, scientists have typically turned to mechanical steering methods, redirecting the source of the beam

Read more...

Models Support Energy-Saving Microwave Technologies

NASA Technology During the Apollo Program, astronauts on the Moon encountered a small menace that created big problems: lunar dust. Similar to how tiny bits of Styrofoam behave on Earth—adhering to anything they touch—lunar dust sticks to spacesuits, spacecraft, tools, and equipment, and is extremely difficult to remove. The clingy nature of the substance is partly due to

Read more...

Materials Advance Chemical Propulsion Technology

NASA Technology In the future, the Planetary Science Division of NASA’s Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA’s In-Space Propulsion Technology (ISPT) project,

Read more...

High-Temperature Coatings Offer Energy Savings

NASA Technology The U.S. X-Plane Program included the first-of-its-kind research in aerodynamics and astronautics with experimental vehicles, including the first aircraft to break the sound barrier; the first aircraft to fly in excess of 100,000, then 200,000, and then 300,000 feet; and the first aircraft to fly at three, four, five, and then six times the

Read more...

Composite Sandwich Technologies Lighten Components

At Glenn Research Center’s Ballistic Impact Facility, engineers study new materials and the ways that they react to sudden, brute force. Using high-speed cameras, various sizes of gas-powered guns, and a variety of other tools, these engineers learn about impacts, ways to build stronger, lighter materials, and how to

Read more...

Cameras Reveal Elements in the Short Wave Infrared

In late 2009, a rocket traveling twice as fast as a speeding bullet crashed into the Moon as part of NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) mission. The resulting impact loosened a mixture of particles, dust, and debris that was analyzed by a host of instruments to

Read more...

Deformable Mirrors Correct Optical Distortions

In March of 2009, the Kepler spacecraft was launched to explore the structure and diversity of planetary systems outside of our own solar system, with a special emphasis on the detection of Earth-sized planets. Once Kepler fulfills its mission, the SIM Lite spacecraft will follow in its path to

Read more...

Stitching Techniques Advance Optics Manufacturing

The amount of detail a telescope can see is directly related to the size of its mirrors. To look deep into space at galaxies over 13 billion light years away, NASA requires telescopes with very large mirrors. Scheduled to launch in 2014, the James Webb Space Telescope (JWST) will

Read more...

Subcategories