NASA Spinoff

Polyimide Boosts High-Temperature Performance

Originating Technology/NASA ContributionPolyimides are a class of polymers notable for chemical, wear, radiation, and temperature resistance, characteristics that have led to applications as diverse as aerospace engine housings and electronics packaging. Other applications include electronics, ranging from insulation for flexible cables to use as a high-temperature adhesive in the semiconductor

NASA Design Strengthens Welds

Originating Technology/NASA ContributionThe Welding Institute (TWI), a nonprofit professional organization based out of the United Kingdom and devoted to the industry of joining materials, engineering, and allied technologies, developed a novel form of welding in the 1990s. Friction stir welding (FSW), the name under which it was patented, has been

Portable Device Analyzes Rocks and Minerals

Originating Technology/NASA ContributionBuilding on the success of the two rover geologists that arrived on Mars in January 2004, NASA’s next rover mission is being planned for travel to the Red Planet before the end of the decade. Twice as long and three times as heavy as the Mars Exploration Rovers,

Sensors Increase Productivity in Harsh Environments

Originating Technology/NASA ContributionA team of scientists at Glenn Research Center, operating under the Aeronautics Research Mission Directorate’s Aviation Safety and Fundamental Aeronautics programs, developed a series of technologies for testing aircraft engine combustion chambers. The team, led by electronics engineer Dr. Robert Okojie, designed a packaging technique and chip fabrication

Novel Process Revolutionizes Welding Industry

Originating Technology/NASA ContributionDeformation resistance welding (DRW) is a revolutionary welding process—a new technique for joining metals—in an industry that has not changed significantly in decades. Developed by the Energy and Chassis Division of the Detroit-based Delphi Corporation (a spinoff company formed by General Motors in 1999), DRW can reduce the

Open-Lattice Composite Design Strengthens Structures

NASA has invested considerable time and energy working with academia and private industry to develop new composite structures that are capable of standing up to the extreme conditions of space. Over time, such technology has evolved from traditional monocoque designs, in which the skin of a metal structure absorbs the

Read more...

Ultra-Sensitive Photoreceiver Boosts Data Transmission

In June 2006, NASA scientists used extensive data transmitted from the Chandra X-ray Observatory deep space telescope to prove that up to 25 percent of the light illuminating the universe comes from the “massive crush of matter succumbing to the extreme gravity of black holes.”

Read more...

Micro Machining Enhances Precision Fabrication

In President Ronald Reagan’s 1984 State of the Union address, he announced plans for a U.S. space station, the equivalent of the Russian space station, Mir. This announcement set off a flurry of congressional funding debates, and it was not until 1988 that the President announced that a consensus had

Read more...

Portable Hyperspectral Imaging Broadens Sensing Horizons

All objects reflect a certain amount of energy, even if it is just the electromagnetic energy created by the movement of electrically charged molecules. Measurements of these reflected energies, called spectra, can be used to create images of observed items and can thus serve to identify objects and substances. To

Read more...

Hypersonic Composites Resist Extreme Heat and Stress

On October 14, 1947, Captain Charles “Chuck” Yeager made history when he became the first pilot in an officially documented flight to ever break the sound barrier. Flying a Bell XS-1 test jet over the Mohave Desert, Yeager hit approximately 700 miles per hour, when a loud boom thundered across

Read more...

Subcategories