NASA Spinoff

In 1928, Alexander Fleming, a young Scottish scientist with a side practice of discretely treating the syphilis infections of prominent Londoners, was researching agents that could be used to combat such bacterial infections. He left his practice for a 2-week vacation, inadvertently leaving several bacterial culture plates unwashed and out of the incubator. When he returned, what immediately struck him was that the plates had grown mold, but the bacteria Fleming had been working with was being fended off by the mold, which he called penicillin, after the mold Penicillium notatum. Although unable to refine or purify the penicillin, Fleming had discovered the archetype of modern antibiotics.

Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA.

Each space shuttle orbiter has 38 Primary Reaction Control System (PRCS) thrusters to help power and position the vehicle for maneuvers in space, including reentry and establishing Earth orbit. Minor flaws in the ceramic lining of a thruster, such as a chip or crack, can cripple the operations of an orbiter in space and jeopardize a mission. The ability to locate, measure, and monitor tiny features in difficult-to-inspect PRCS thrusters improves their overall safety and lifespan.

Glenn Research Center has combined state-of-the-art electrical designs with complex, computer-aided analyses to develop some of today’s most advanced power systems, in space and on Earth. The center’s Power and On-Board Propulsion Technology Division is the brain behind many of these power systems. For space, this division builds technologies that help power the International Space Station, the Hubble Space Telescope, and Earth-orbiting satellites. For Earth, it has woven advanced aerospace power concepts into commercial energy applications that include solar and nuclear power generation, battery and fuel cell energy storage, communications and telecommunications satellites, cryocoolers, hybrid and electric vehicles, and heating and air-conditioning systems.

NASA’s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program’s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability.

The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

With retirement of the space shuttle imminent, and the commercial space industry burgeoning, NASA is searching for safe and innovative methods for carrying payload and passengers to the Moon, Mars, and beyond. The search for new vehicles has been going on for some years now, with a variety of plans being pursued and countless technologies being developed.

Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems—a reversion to old-style liquid propellants.

Health and Medicine

Transportation

Public Safety

Consumer Goods

Environmental Resources

Computer Technology

Industrial Productivity

Health and Medicine

Transportation

Public Safety

Consumer, Home, and Recreation

Environmental and Agricultural Resources

Computer Technology

Industrial Productivity

Subcategories

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.