Designs of gores reflect multiple considerations of assembly, stowage, and deployment.

An improved method of designing complexly shaped inflatable shells to be assembled from gores was conceived for original application to the inflatable outer shell of a developmental habitable spacecraft module having a cylindrical midlength section with toroidal end caps.

The Basic Repeating Unit of a shell comprising a cylinder with toroidal end caps is a subassembly of three gores.
The method is also applicable to inflatable shells of various shapes for terrestrial use. The method addresses problems associated with the assembly, folding, transport, and deployment of inflatable shells that may comprise multiple layers and have complex shapes that can include such doubly curved surfaces as toroids and spheres. One particularly difficult problem is that of mathematically defining fold lines on a gore pattern in a double- curvature region. Moreover, because the fold lines in a double-curvature region tend to be curved, there is a practical problem of how to implement the folds. Another problem is that of modifying the basic gore shapes and sizes for the various layers so that when they are folded as part of the integral structure, they do not mechanically interfere with each other at the fold lines.

« Start Prev 1 2 Next End»

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.