Tech Briefs

Efficient Optimization of Low-Thrust Spacecraft Trajectories

A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called “direct” and “indirect.” In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primervector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-theart trajectory-optimization methods while requiring much less computation time.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Trajectory control, Optimization, Spacecraft

Generative Representations for Automated Design of Robots

Compact representations circumvent the computational obstacle to complexity.

A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term “generative representations” as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity.

Posted in: Briefs, TSP, Information Sciences, Design processes, Robotics

Cylindrical Asymmetrical Capacitors for Use in Outer Space

A report proposes that cylindrical asymmetrical capacitors (CACs) be used to generate small thrusts for precise maneuvering of spacecraft on long missions. The report notes that it has been known for decades that when high voltages are applied to CACs in air, thrusts are generated — most likely as a result of ionization of air molecules and accelera tion of the ions by the high electric fields. The report goes on to discuss how to optimize the designs of CACs for operation as thrusters in outer space. Components that could be used to enable outer-space operation include a supply of gas and a shroud, partly surrounding a CAC, into which the gas would flow. Other elements of operation and design discussed in the report include variation of applied voltage and/or of gas flow to vary thrust, effects of CAC and shroud dimensions on thrust and weight, some representative electrode configurations, and several alternative designs, including one in which the basic CAC configuration would be modified into something shaped like a conventional rocket engine with converging/ diverging nozzle and an anode with gas feed in the space that, in a conventional rocket engine, would be the combustion chamber.

Posted in: Briefs, Electronics & Computers, Capacitors, Spacecraft guidance, Capacitors, Spacecraft guidance

Protecting Against Faults in JPL Spacecraft

A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA’s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, faultprotection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and “health” statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a generalpurpose “Safe Mode” response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.

Posted in: Briefs, TSP, Information Sciences, Vehicle health management, Spacecraft

Enhanced Elliptic Grid Generation

Decay parameters that govern grids near boundaries are determined automatically.

An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically.

Posted in: Briefs, Information Sciences, Mathematical models

Automated Knowledge Discovery From Simulators

Active learning process efficiently explores simulator input space.

A computational method, SimLearn, has been devised to facilitate efficient knowledge discovery from simulators. Simulators are complex computer programs used in science and engineering to model diverse phenomena such as fluid flow, gravitational interactions, coupled mechanical systems, and nuclear, chemical, and biological processes. SimLearn uses active-learning techniques to efficiently address the “landscape characterization problem.” In particular, SimLearn tries to determine which regions in “input space” lead to a given output from the simulator, where “input space” refers to an abstraction of all the variables going into the simulator, e.g., initial conditions, parameters, and interaction equations. Landscape characterization can be viewed as an attempt to invert the forward mapping of the simulator and recover the inputs that produce a particular output.

Posted in: Briefs, TSP, Information Sciences, Simulation and modeling

Algorithm Optimally Allocates Actuation of a Spacecraft

A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix⋅vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as subalgorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.

Posted in: Briefs, Mechanical Components, Mechanics, Flight control systems, Flight control systems, Spacecraft

Removing Bioactive Contaminants by Use of Atomic Oxygen

Bioactive contaminants are removed without using liquid chemical baths or high temperatures.

A method of removing endotoxins and other biologically active organic compounds from the surfaces of solid objects is based on exposure of the objects to monatomic oxygen generated in oxygen plasmas. The mon- atomic oxygen reacts strongly and preferentially with the organic contaminants to form volatile chemical species. The method was developed especially for removing such contaminants as lipopolysaccharides, proteins, lipids, and other biologically active contaminants from surfaces of orthopedic implants prior to sterilization and implantation; if not removed, these con- taminants can contribute to inflammation that sometimes necessitates the surgical removal of the implants.

Posted in: Briefs, TSP, Materials

Electro-Optical Modulator Bias Control Using Bipolar Pulses

Bias is automatically adjusted to maintain maximum extinction during “off” periods.

An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an “on” period and the power transmitted during an “off” period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal.

Posted in: Briefs, TSP, ptb catchall, Tech Briefs, Photonics, Architecture, Optics, Wireless communication systems, Architecture, Optics, Wireless communication systems

Fiber-Optic Strain Gauge With High Resolution And Update Rate

Changes in strain are correlated with changes in speckle patterns.

An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing.

Posted in: Briefs, ptb catchall, Tech Briefs, Photonics, Finite element analysis, Fiber optics, Fiber optics, Test equipment and instrumentation

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.