Tech Briefs

Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells

Boron nitride nanotubes contribute to strength and fracture toughness.

A material consisting of a barium calcium aluminosilicate glass reinforced with 4 weight percent of boron nitride nanotubes (BNNTs) has shown promise for use as a sealant in planar solid oxide fuel cells (SOFCs). The composition of the glass in question in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass was formulated to have physical and chemical properties suitable for use as a planar- SOFC sealant, but has been found to be deficient in one aspect: it is susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/BNNT composite material was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking.

Posted in: Briefs, TSP, Materials, Fuel cells, Composite materials, Glass, Nanomaterials
Read More >>

Improved Single-Source Precursors for Solar-Cell Absorbers

Deposition properties and final compositions can be tailored.

Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film solar photovoltaic cells. The semiconductors in question are denoted by the general formula CuInxGa1–xSySe2–y, where x≤1 and y≤2. These semiconductors have been investigated intensively for use in solar cells because they exhibit longterm stability and a high degree of tolerance of radiation, and their bandgaps correlate well with the maximum photon power density in the solar spectrum. In addition, through selection of the proportions of Ga versus In and S versus Se, the bandgap of CuInxGa1–xSySe2–y can be tailored to a value between 1.0 and 2.4 eV, thus making it possible to fabricate cells containing high and/or graded bandgaps.

Posted in: Briefs, TSP, Materials, Solar energy, Semiconductors
Read More >>

Spray CVD for Making Solar-Cell Absorber Layers

Spray CVD combines the advantages of metalorganic CVD and spray pyrolysis.

Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds:
[(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2] . CuInS2 is a member of the class of chalcopyrite semiconductors described in the immediately preceding article. [(PBu3)2Cu(SEt)2In(SEt)2] and [(PPh3)2 Cu(SEt)2In(SEt)2] are members of the class of single-source precursors also described in the preceding article.

Posted in: Briefs, TSP, Materials, Solar energy, Spraying, Chemicals, Gases
Read More >>

Making Ternary Quantum Dots From Single-Source Precursors

Relative to a prior process, this process is simpler and safer.

A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of highefficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.

Posted in: Briefs, TSP, Materials, Solar energy, Product development, Fabrication, Refractory materials
Read More >>

A Method of Assembling Compact Coherent Fiber-Optic Bundles

The method is based on hexagonal close packing.

A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based straightforwardly on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Fiber optics, Fiber optics, Assembling
Read More >>

Manufacturing Diamond Under Very High Pressure

Pure or doped diamond is crystallized from molten carbon and in solid state.

A process for manufacturing bulk diamond has been made practical by the invention of the High Pressure and Temperature Apparatus capable of applying the combination of very high temperature and high pressure needed to melt carbon in a sufficiently large volume. The rate of growth achievable in this process is about ten times the rate achievable in older processes. Depending on the starting material and temperature-and-pressure schedule, this process can be made to yield diamond in any of a variety of scientifically and industrially useful forms, including monocrystalline, polycrystalline, pure, doped, and diamond composite. (Doping makes it possible to impart desired electrical and optical properties, including semiconductivity and color.) The process can also be used to make cubic boron nitride.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Manufacturing processes
Read More >>

Compact Fuel-Cell System Would Consume Neat Methanol

Size, mass, and parasitic power consumption would be reduced.

In a proposed direct methanol fuelcell electric- power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system. By rendering unnecessary some of the auxiliary components and subsystems needed in other direct methanol fuel-cell systems for redistributing water, diluting methanol, and regulating temperature, this fuel-cell design would make it possible to construct a more compact, less massive, more energy-efficient fuel-cell system.

Posted in: Briefs, TSP, Physical Sciences, Downsizing, Water, Electric power, Fuel cells, Methanol, Product development
Read More >>

Ring-Resonator/Sol-Gel Interferometric Immunosensor

Light would make multiple passes through the sensing volume.

A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. The binding of the antigens to the immobilized antibodies would change the index of refraction of the sensing volume, which would be mounted in one of the interferometer arms. The interferometer would measure the change in the index of refraction, thereby indirectly measuring the concentration of the antigen species of interest.

Posted in: Briefs, TSP, Physical Sciences, Measurements, Medical, health, and wellness, Test equipment and instrumentation
Read More >>

Algorithm Would Enable Robots to Solve Problems Creatively

A control architecture is based on hypotheses concerning natural intelligence.

A control architecture and algorithms to implement the architecture have been conceived to enable a robot to learn from its experiences and to combine knowledge gained from prior experiences in such a way as to be able to solve new problems. The architecture is an abstraction of an interacting system of relatively simple components that, when properly interconnected, should enable the spontaneous emergence of behaviors from the complete system that would not necessarily be expected from the individual components. These emergent behaviors should enable a robot to interact robustly and intelligently with a complex, dynamic environment.

Posted in: Briefs, Information Sciences, Mathematical models, Architecture, Artificial intelligence, Electronic control systems, Architecture, Artificial intelligence, Electronic control systems, Robotics
Read More >>

Hypothetical Scenario Generator for Fault-Tolerant Diagnosis

This is a means of performing diagnostic reasoning when data are missing.

The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance.

Posted in: Briefs, TSP, Information Sciences, Artificial intelligence, Artificial intelligence, Diagnostics, Prognostics, Aircraft, Spacecraft
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.