Tech Briefs

Electro-Optical Modulator Bias Control Using Bipolar Pulses

Bias is automatically adjusted to maintain maximum extinction during “off” periods.

An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulseposition modulation (PPM) optical datacommunication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an “on” period and the power transmitted during an “off” period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal.

Posted in: Briefs, TSP, Electronics & Computers, Optics, Optics

Fiber-Optic Strain Gauge With High Resolution And Update Rate

Changes in strain are correlated with changes in speckle patterns.

An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing.

Posted in: Briefs, Physical Sciences, Measurements, Fiber optics, Fiber optics, Test equipment and instrumentation

Temperature-Corrected Model of Turbulence in Hot Jet Flows

A standard turbulence model is corrected for total-temperature gradient and compressibility.

An improved correction has been developed to increase the accuracy with which certain formulations of computational fluid dynamics predict mixing in shear layers of hot jet flows. The CFD formulations in question are those derived from the Reynolds-averaged Navier-Stokes equations closed by means of a two-equation model of turbulence, known as the k−ε model, wherein effects of turbulence are summarized by means of an eddy viscosity. The need for a correction arises because it is well known among specialists in CFD that two-equation turbulence models, which were developed and calibrated for room-temperature, low Mach-number, plane-mixing-layer flows, under predict mixing in shear layers of hot jet flows. The present correction represents an attempt to account for increased mixing that takes place in jet flows characterized by high gradients of total temperature. This correction also incorporates a commonly accepted, previously developed correction for the effect of compressibility on mixing.

Posted in: Briefs, TSP, Information Sciences, Computational fluid dynamics, Turbulence

Mars-Approach Navigation Using In Situ Orbiters

A document discusses the continuing development of a navigation system that would enable a spacecraft to approach Mars on a trajectory precise enough to enable the spacecraft to land within 1 km of a specified location on the Martian surface. This degree of accuracy would represent an order-of-magnitude improvement over that now obtained in radiometric tracking by use of the Deep Space Network. The navigation system would be implemented largely in software running in digital processors in the Electra transceiver, the Mars Network’s standard radio transceiver, that would be in both the approaching spacecraft and Mars Network orbiter. The Mars Network is an ad hoc constellation of existing and future Mars science orbiters and dedicated telecommunication orbiters that has been established as a communication and navigation infrastructure to support the exploration of Mars. The software would exploit the sensory and data-processing capabilities of the Electra transceivers to gather Doppler-shift and other radiometric tracking data and process those data into trajectories data that would be accurate to within 0.3 km at the point of entry into the Martian atmosphere (as needed to land within 1 km of a target surface location).

Posted in: Briefs, TSP, Electronics & Computers, Navigation and guidance systems, Navigation and guidance systems, Spacecraft

Efficient Optimization of Low-Thrust Spacecraft Trajectories

A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called “direct” and “indirect.” In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primervector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-theart trajectory-optimization methods while requiring much less computation time.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Trajectory control, Optimization, Spacecraft

Generative Representations for Automated Design of Robots

Compact representations circumvent the computational obstacle to complexity.

A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term “generative representations” as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity.

Posted in: Briefs, TSP, Information Sciences, Design processes, Robotics

Cylindrical Asymmetrical Capacitors for Use in Outer Space

A report proposes that cylindrical asymmetrical capacitors (CACs) be used to generate small thrusts for precise maneuvering of spacecraft on long missions. The report notes that it has been known for decades that when high voltages are applied to CACs in air, thrusts are generated — most likely as a result of ionization of air molecules and accelera tion of the ions by the high electric fields. The report goes on to discuss how to optimize the designs of CACs for operation as thrusters in outer space. Components that could be used to enable outer-space operation include a supply of gas and a shroud, partly surrounding a CAC, into which the gas would flow. Other elements of operation and design discussed in the report include variation of applied voltage and/or of gas flow to vary thrust, effects of CAC and shroud dimensions on thrust and weight, some representative electrode configurations, and several alternative designs, including one in which the basic CAC configuration would be modified into something shaped like a conventional rocket engine with converging/ diverging nozzle and an anode with gas feed in the space that, in a conventional rocket engine, would be the combustion chamber.

Posted in: Briefs, TSP, Electronics & Computers, Capacitors, Spacecraft guidance, Capacitors, Spacecraft guidance

Protecting Against Faults in JPL Spacecraft

A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA’s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, faultprotection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and “health” statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a generalpurpose “Safe Mode” response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.

Posted in: Briefs, TSP, Information Sciences, Vehicle health management, Spacecraft

Enhanced Elliptic Grid Generation

Decay parameters that govern grids near boundaries are determined automatically.

An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically.

Posted in: Briefs, Information Sciences, Mathematical models

Automated Knowledge Discovery From Simulators

Active learning process efficiently explores simulator input space.

A computational method, SimLearn, has been devised to facilitate efficient knowledge discovery from simulators. Simulators are complex computer programs used in science and engineering to model diverse phenomena such as fluid flow, gravitational interactions, coupled mechanical systems, and nuclear, chemical, and biological processes. SimLearn uses active-learning techniques to efficiently address the “landscape characterization problem.” In particular, SimLearn tries to determine which regions in “input space” lead to a given output from the simulator, where “input space” refers to an abstraction of all the variables going into the simulator, e.g., initial conditions, parameters, and interaction equations. Landscape characterization can be viewed as an attempt to invert the forward mapping of the simulator and recover the inputs that produce a particular output.

Posted in: Briefs, TSP, Information Sciences, Simulation and modeling

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.