Electronic Components

X-ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

This technology is especially relevant in high-end, high-speed electronics.

NASA’s Langley Research Center has developed a method of using x-ray diffraction (XRD) to detect defects in cubic semiconductor (100) wafers. The technology allows non-destructive evaluation of wafer quality in a simple, fast, inexpensive process that can be easily incorporated into an existing fab line. The invention adds value throughout the semiconductor industry, but is especially relevant in high-end, high-speed electronics where wafer quality has a more significant effect on yields.

Posted in: Briefs, Electronic Components, Electronics & Computers, Semiconductors, X-ray inspections
Read More >>

System for Configuring Modular Telemetry Transponders

Possible applications include weather monitoring and forecasting, Earth observation, and ionospheric studies.

Researchers at NASA’s Marshall Space Flight Center have developed software-defined radio (SDR) telemetry transceiver technology to collect and transmit data to and from small satellites and microsatellites. The SDR concept uses a minimal number of traditional analog radio-frequency components to convert RF signals to a digital format. Digital signal processing replaces bulky radio-frequency components, and enables reduced cost as well as size, weight, and power requirements (SWaP). The NASA technology enables software and firmware updates that increase the lifespan and efficacy of satellites, supporting a wide variety of changing radio protocols as they are developed. A modular design enables inclusion of multiple band frequency transmitters and receivers (S-band, X-band, Ka-band, etc.). The NASA SDR can find use in satellite applications in which cost savings, upgradability, and reliability are essential. A first-generation SDR has been flight tested on NASA’s FASTSAT mission.

Posted in: Briefs, Electronic Components, Electronics & Computers, Computer software / hardware, Computer software and hardware, Satellite communications, Computer software / hardware, Computer software and hardware, Satellite communications, Satellites
Read More >>

Sandia, Harvard Team Create First Quantum Computer Bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

Posted in: News, Computers, Electronic Components, Electronics, Electronics & Computers
Read More >>

Researchers Create Smallest Transistor Ever

For more than a decade, engineers have been eyeing the finish line in the race to shrink the size of components in integrated circuits. They knew that the laws of physics had set a 5-nanometer threshold on the size of transistor gates among conventional semiconductors, about one-quarter the size of high-end 20-nanometer-gate transistors now on the market. But some laws are made to be broken, or at least challenged.

Posted in: News, Computers, Electronic Components, Electronics, Electronics & Computers
Read More >>

T-rays Will “Speed Up” Computer Memory By a Factor of 1,000

Together with their colleagues from Germany and the Netherlands, scientists at the Moscow Institute of Physics and Technology (MIPT) have found a way to significantly improve computer performance. They propose the use of so-called T-waves – or terahertz radiation – as a means of resetting computer memory cells. This process is several thousand times faster than magnetic-field-induced switching.

Posted in: News, News, Board-Level Electronics, Computers, Electronic Components, Electronics, Electronics & Computers
Read More >>

Metamaterial Structures Shrink When Heated

While most solid materials expand with heat, a new 3D-printed structure built by Massachusetts Institute of Technology (MIT) engineers is designed to shrink. The metamaterial may enable heat-resistant circuit boards.

Posted in: News, Board-Level Electronics, Electronic Components, Materials
Read More >>

Nasa Processing Technologies Enable Advanced Computing Applications

Embedded processing technologies developed at NASA field centers are enabling the use of next-generation computer-controlled instruments and spacecraft, including SpaceCubes, integrated photonics modems, and new ways to manufacture computer components.

SpaceCube Processors

Next-generation spacecraft instruments are capable of producing data at rates of 108 to 1011 bits per second, and both their instrument designs and mission operations concepts are severely constrained by data rate and volume. SpaceCube™ enables these next-generation missions.

Posted in: Articles, Aerospace, Electronic Components, Electronics & Computers, Photonics, Avionics, Computer software / hardware, Computer software and hardware, Data exchange, Avionics, Computer software / hardware, Computer software and hardware, Data exchange, Spacecraft
Read More >>

Keylock Switches

APEM, Vista, CA, introduced LK Series keylock switches available in nickel-plated or black overmolded barrel shutter and key. The multi-position switches are available in momentary and maintained functions, and in single or double pole configurations. They feature two-, three-, and four-position locking configuration with positive detent and multiple key-pull locations. They are rated for 4A at 125 VAC or 28 VDC, with a mechanical lifespan of 6,000 cycles at full load.

Posted in: Products, Electronic Components, Mechanical Components
Read More >>

Researchers Create Smallest Transistor Ever

A research team led by faculty scientist Ali Javey at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has created a transistor with a working 1-nanometer gate — the smallest to date.

Posted in: News, Board-Level Electronics, Electronic Components, Electronics, Electronics & Computers, PCs/Portable Computers
Read More >>

Noise Analysis in Precision Analog Designs

There are articles explaining component-level noise analysis for amplifiers or for analog-to-digital converters (ADCs), but very few that explain how to budget noise or analyze noise from the system level. This paper reviews the basics of noise analysis in precision designs, relates those calculations to system-level specifications such as sensitivity, dynamic range, and resolution, and answers some of the big questions about low-noise design.

Posted in: White Papers, Electronic Components, Electronics, Electronics & Computers, Semiconductors & ICs
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.