High-Bandwidth, Wide Field-of-View, Ultra-Sensitive, Radiation-Hardened, Short-Wave Infrared (SWIR) Receiver

Goddard Space Flight Center, Greenbelt, Maryland

Every LiDAR design faces the classic balancing act of signal versus noise. In order to maximize the range of a LiDAR, a receiver must amplify fractions of a micro-amp of photo current into a usable range for signal processing to occur, but without adding significant amounts of noise. Additionally, LiDAR receiver designs must exhibit very wide dynamic ranges because of the uncertainty in return signal amplitude. Meeting all these requirements in a small size, weight, and power form factor while keeping costs low is a major challenge.

Posted in: Briefs, Electronics, Electronics & Computers, Amplifiers, Lidar, Amplifiers, Lidar, Noise, Noise

Magnetometer for Vectorized Field Sensing via Zero-Field, Spin-Dependent Recombination in Silicon Carbide Microelectronics

This self-calibrating, solid-state-based magnetometer is intended for miniaturized applications in high-temperature and high-radiation environments.

NASA’s Jet Propulsion Laboratory, Pasadena, California

The proposed technology involves the sensitive detection of magnetic fields using the zero-field, spin-dependent recombination (SDR) phenomenon that naturally arises from atomic-scale, deep-level defects intrinsic to silicon carbide (SiC) microelectronics. The SDR phenomenon enables the fabrication of SiC-based magnetic field sensing diodes that are ideal for the development of miniaturized and purely electrical-based magnetometers.

Posted in: Briefs, Electronics, Electronics & Computers, Microelectricmechanical device, Microelectromechanical devices, Microelectricmechanical device, Microelectromechanical devices, Magnetic materials, Test equipment and instrumentation

Ethernet-to-HRDL Conversion Design

Dual Ethernet inputs are multiplexed into a single HRDL stream to accommodate Ethernet-based ISS instruments.

Goddard Space Flight Center, Greenbelt, Maryland

The International Space Station (ISS) uses a fiber optic High Rate Data Link (HRDL) standard for transferring data. ISS experiments, however, may prefer an Ethernet interface. This design allows ISS instruments to keep their Ethernet interface by converting the Ethernet data format into a format compatible with the ISS. The Express Logistics Carrier (ELC) incorporated this design on the ISS in 2010. The design was described with VHDL code. It has been implemented with an Actel RTAX Field Programmable Gate Array (FPGA). This FPGA is part of the Express Logics Carrier (ELC) onboard the ISS.

Posted in: Briefs, Electronics, Electronics & Computers, Data exchange, Fiber optics, Data exchange, Fiber optics, Spacecraft

Flash LIDAR Emulator

Langley Research Center, Hampton, Virginia

The Flash LIDAR Emulator is a computer system designed to be functionally equivalent to a Flash LIDAR sensor camera. The system has the same hardware interfaces as the sensor, and produces images of comparable quality to the flash LIDAR sensor in real time (30 frames per second). The emulator is then used as a substitute for the LIDAR camera during development and testing of the software algorithms and hardware systems that interface with the camera. The emulator software was custom-developed entirely in-house, and integrates tools and techniques from several computer fields, including parallel processing, ray-tracing, geometric optimization, CPU optimization, CameraLink interfaces, lowlevel networking, and GPU-based general computing. The software was designed to run on an 8-processor Dell workstation with an NVIDIA graphics card to support general-purpose GPU computing, and CameraLink and network interfaces to support the hardware interfaces of the Flash LIDAR camera.

Posted in: Briefs, Electronics, Electronics & Computers, Computer simulation, Lidar, Lidar

Architecture for an Intermediate-Frequency Digital Downconversion and Data Distribution Network

Developed originally for Deep Space Network downlink receivers, applications include high-speed digital receivers for cellular networks.

NASA’s Jet Propulsion Laboratory, Pasadena, California

NASA’s Deep Space Network (DSN) is looking to modernize aging downlink receivers for telemetry, tracking, and radio science. It is looking to replace multiple types of custom-built, special-purpose receivers with a unified receiver architecture that can support the various downlink data types. As part of this modernization, it is desired to only digitize the data once and then distribute the data using commercial switching network technology to multiple back-end receiver processing hardware and software. The main problem to be solved is how to distribute efficiently and flexibly high-bandwidth intermediate-frequency (100 to 600 MHz) digitized signals across a signal processing center for use in the DSN.

Posted in: Briefs, Electronics, Electronics & Computers, Antennas, Architecture, Computer software / hardware, Computer software and hardware, Data exchange, Switches, Antennas, Architecture, Computer software / hardware, Computer software and hardware, Data exchange, Switches

GSPS DACs Enable Ultra-Wide Bandwidth Applications

To meet the increasing capacity demand of mobile customers, the emerging E-band market requires wider bandwidth capabilities compared to traditional microwave backhaul wireless architectures. Due to increased capacity, 2-GHz E-band systems will be needed in the near future. This white paper covers the demands of current E-band point-to-point systems, and how Analog Devices’ high-speed digital-to-analog converters (DACs) provide the necessary bandwidth and sampling frequencies to support them.

Posted in: White Papers, Electronics, Electronics & Computers, Data Acquisition, Sensors

CMOS-Compatible Ohmic Contact RF MEMS Switch

Radio frequency (RF) microelectromechanical system (MEMS) switches have advantages over their solid-state counterparts. However, ohmic contact MEMS devices face several significant limitations, preventing entry into the mass market. These limitations are cost, reliability, packaging, and integration.

Posted in: Briefs, Electronics, Electronics & Computers, Microelectricmechanical device, Microelectromechanical devices, Radio equipment, Switches, Microelectricmechanical device, Microelectromechanical devices, Radio equipment, Switches

Miller-Jogging for Synthesizer Lock Algorithm Extension

NASA’s Jet Propulsion Laboratory, Pasadena, California

The University of California Los Angeles (UCLA) has developed a wide range of CMOS (complementary metal–oxide–semiconductor) phase lock loop (PLL) chips with self-healing/self-calibration capabilities, allowing them to adapt, on the fly, to changes in temperature and other environment parameters. All CMOS PLLs typically have three major settings that self-healing and calibration can adjust: VCO (voltage controlled oscillator) coarse tuning, divider tuning, and CML (current mode logic) tuning. Previous work done at UCLA uses these “knobs” or settings exclusively to self-lock a PLL. Locking criteria is established by monitoring the control voltage with an analog-to-digital converter (ADC) to see if the PLL loop is settled in the middle of the range (locked), or sitting at the ground or supply (unlocked).

Posted in: Briefs, Electronics, Electronics & Computers, Mathematical models, Semiconductors

Deployable Antenna Circuit Board Material Design and Fabrication Process

This technology has applications in solar arrays for small satellites.

The Integrated Solar Array and Reflectarray (ISARA) antenna requires a rugged circuit board material that will meet the following requirements: (1) remains sufficiently flat over the required operating temperature range with solar cells mounted, and under full solar illumination, including heat dissipation due to ≈30% efficiency solar cells; (2) provides a sufficiently high-quality RF-grade circuit board material needed to print the reflectarray antenna; (3) is sufficiently thin (<2.5 mm) to fit within the available stowage volume; and (4) has low mass density (≈5 kg/m2).

Posted in: Briefs, TSP, Electronics, Electronics & Computers, Antennas, Integrated circuits, Antennas, Integrated circuits, Fabrication

Full-Wave Matching Circuit Optimization Shortens Design Iterations

Full-wave matching circuit optimization (FW-MCO) is a new technology introduced by Remcom, which combines full wave 3D EM simulation and circuit optimization to solve an age-old RF problem:

determining which component values provide the desired match for a given matching network layout.

Posted in: White Papers, Communications, Electronics, Electronics & Computers, Electronics & Computers, Software

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.